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ABSTRACT
We are living in a golden age of machine learning. Powerful models are being trained to perform many tasks
far better than is possible using traditional software engineering approaches alone. However, developing and
deploying those models in existing software systems remains difficult. In this paper we present SmartChoices, a
novel approach to incorporating machine learning into mature software stacks easily, safely, and effectively. We
explain the overall design philosophy and present case studies using SmartChoices within large scale industrial
systems.

1 INTRODUCTION

Modern deep learning models power an increasing range
of products and services, such as search, recommendation
and discovery systems, and online advertising (among many
others). However, training and deploying these models
in production systems is fraught with new failure modes
and opportunities to accrue distinct forms of technical debt
(Sculley et al., 2015). Two major issues identified by those
authors are that we cannot crisply define desired program
behavior in cases where machine learning (ML) is necessary
(which erodes abstraction boundaries) and most practition-
ers lack sophisticated tooling to track data provenance and
data dependencies the way we do with source and object
code.

In this paper, we re-envision the workflows to deploy ma-
chine learning in large scale systems, with an eye towards
significantly reducing engineering effort and scope for er-
rors. The result, SmartChoices, treats machine learning
models as learned implementations within an application,
which benefit from existing tooling for managing software.
Ultimately, we aspire to make improving systems with ML
nearly as easy as using a typical software library, and treat
trained decision policies as code. Hence SmartChoices’
design represents a fertile middle ground between grand
ambitions to pervasively replace traditional software with
deep learning, and the hard–won lessons of veteran engi-
neers on how to build and run reliable production systems
– and particularly systems that are critically dependent on
machine learning models. It also means we diverge consid-

1Google Research. Correspondence to: SMARTCHOICES au-
thors <smartchoices-2023-authors@google.com>.

erably from the design philosophy of ML platforms such
as TFX (Baylor et al., 2017), Kubeflow2, and others, which
provide facilities to setup arbitrary ML pipelines that are
not inherently tied to application behavior, are not tightly
integrated into the client software, and require separate de-
velopment workflows for pipeline management above and
beyond standard software engineering workflows.

2 SCOPE AND CAPABILITIES

We designed SmartChoices to address the following class of
problems: A system is faced with a sequence of decisions,
such that at time t it is provided a context xt ∈ X as input,
and a set of permissible outputs At (known as arms in the
bandit literature) which is a subset of the universe of armsA.
It then must choose an arm at ∈ At and receives feedback
yt ∈ Rk indicating the quality of the arm with respect to
k ≥ 1 metrics. The goal is to provide an implementation
π : X × 2A → A to optimize the metrics, which we call a
policy. Throughout, we will refer to metrics we wish to max-
imize as rewards and those we wish to minimize as costs.
In most cases, this implementation will be a parameterized
function trained on available data {(xt, at, yt) : t ≥ 1}. If
k = 1, optimization consists simply of maximizing a re-
ward or minimizing a cost. For k > 2, we consider two
types of optimization tasks: metric-constrained optimiza-
tion (e.g., maximize reward without increasing cost), and
efficiently discovering the Pareto frontier of tradeoffs and
then targeting a point along it selected by the system owner.

This problem class is broad and slightly underspecified. As
such, we will illustrate the details in various special cases
below and with case studies of real deployments in §6.

2https://github.com/kubeflow/kubeflow
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2.1 Contextual Bandits

The most basic formulation for contextual bandits involves
a fixed small universe of arms A (e.g., categories encoded
as enum values) and a context domain X = Rd for some d.
SmartChoices supports several important modeling features
beyond this basic formulation.

Mixed-type inputs SmartChoices supports mixed-type
inputs (including numeric, enumeration, and string inputs)
via automatically-generated embedding layers in our critic-
model based implementation.

Case Studies: (i) deciding how much compute capacity
(specifically, an integral thread pool size) to devote per task
for a service with diverse task sizes (§6.3) and (ii) decid-
ing whether to partition tasks for scheduling on multiple
machines (§6.4).

Time-varying arm sets When At ⊂ A, we enforce that
at ∈ At via selection masks in the policy.

Case Study: Selecting from a curated list of experiences
(§6.6)

Arm-Features In many applications, the range of arms
At is complex and may completely change over time (e.g.,
recommending today’s top news stories). In such cases, it is
critical to be able to generalize across arms. SmartChoices
supports associating each arm with features (henceforth
arm-features) to allow for generalization to unseen arms.
For example, suppose there is an available embedding Φ of
objects (e.g., sentences or images) into Rd for some d, and
a retrieval process for selecting a reasonably sized set of
candidate objects C(x) for a context x. Then SmartChoices
may select arms using the resulting embedding as features,
by effectively choosing among At = {Φ(c) : c ∈ C(xt)}
and then returning the object associated with the selected
embedding vector.

Case Studies: (i) improving the efficiency of a large content
delivery network via a self-adapting cache (§6.1), (ii) accel-
erating ML workloads via smarter compiler optimization
(§6.2).

2.2 Ranking

Ranking involves ordering some provided items and return-
ing a list of the best ` of them. In this regard it involves a
combinatorially large arm space (with n!/(n− `)! possible
arms given n items). It also involves a different feedback
setting than contextual bandits, with feedback for particular
positions (and hence items) in the list.

SmartChoices supports ranking via the use of a critic model
mθ : X × A → R predicting the reward for each item.
Users provide feedback via a scalar score for each list en-

try (henceforth score vector feedback); this enables us to
support the popular cascade click feedback model, where
we assume the user sequentially observes the items and
interacts with the first one they find relevant.

In addition to a simple greedy approach that ranks items
in descending order of predicted reward, SmartChoices al-
lows for smart exploration via weighted sampling of items.
Specifically, SmartChoices picks a list of ` items by sam-
pling ` times from the Plackett–Luce distribution (Grover
et al., 2019) seeded by the predicted reward. SmartChoices
also supports diversity by penalizing items similar to the
ones that have been already selected.

Case Studies: Ranking is used pervasively for recommen-
dations. We discuss recommending actions for business
owners to take to optimize their profiles (§6.7).

2.3 Multimetric optimization

In most applications, there are several metrics of interest,
with inevitable tradeoffs.

2.3.1 Metric constrained optimization

A common response is to optimize with respect to one met-
ric while constraining our decisions with respect to another.
Examples include minimizing latency while maintaining
a specified throughput target (latency vs. throughput), or
maximizing the quality of results while keeping the average
cost below a target (quality vs cost). SmartChoices enables
metric constrained optimization to be done at the policy
level. More specifically, we presume a distribution of deci-
sion problem instances (X,A) and an associated (possibly
stochastic) scalar reward and cost(s) – all of which may
be initially unknown – and a known vector of budgets C.
SmartChoices can then search for implementations

π∗ := arg maxπ E [reward(π(X,A))] s.t.
E [cost(π(X,A))] ≤ C

Without contexts (i.e., X = ∅), this is known as Bayesian
optimization with unknown constraints (Gelbart et al., 2014).
With contexts, this problem is very closely related to con-
textual bandits with knapsack constraints, for which there
are known results for the stochastic (Agrawal et al., 2016)
and adversarial settings (Sun et al., 2017). In contrast to
the prior work, we are interested in per–instance average
budgets (e.g., serving an infinite stream of online queries
at bounded average latency) rather than cumulative budgets
that eventually run out (e.g., dynamically pricing a limited
supply of goods for maximum revenue).

An important consideration is that these constraints (specif-
ically, the costs) must be learned. As such, the algorithm
must be allowed to violate the constraints while learn-
ing. While there are ways to mitigate this (e.g., see §4.2),
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SmartChoices is not designed or intended for circumstances
where individual decisions are high-stakes (e.g., selecting
medical treatments).

Case Study: We apply metric constrained optimization to
choose when to update an ads cache, trading off engagement
metrics with compute cost (§6.5).

2.3.2 Pareto Frontier Search

For applications with soft constraints, engineers may prefer
a more exploratory approach than that of §2.3.1. In particu-
lar, we offer the ability to identify the set of possible trade-
offs via identifying the Pareto frontier, defined as follows.
For a vector y ∈ Rk, call it achievable if there is an imple-
mentation π with expected metrics y under the distribution
of inputs and rewards. That is, ∃π . E [Y |π(X,A)] = y. For
maximization metrics (where higher values are desirable),
the Pareto frontier is the set of achievable metric vectors
y ∈ Rk such that no other achievable metric vector y′ ex-
ceeds it in all metrics, i.e., satisfies y′i > yi for all i.

To address this, SmartChoices supports scalarizing pre-
dicted metrics, i.e., combining them in a single scalar re-
ward via a known scalarization function. Parameterized
scalarization functions are supported via inference-time pa-
rameters, allowing the scalarization used to vary for each
choice made, which enables efficient exploration of the
Pareto frontier. Linear scalarizations (i.e., linear combina-
tions of metrics) are simple and enable the discovery of
Pareto frontiers when the achievable metrics form a convex
set. For generally shaped Pareto frontiers, we use the hyper-
volume scalarizations (Zhang & Golovin, 2020), which can
discover arbitrarily shaped frontiers.

Using scalarizations decoupled from the metric predictions
has several advantages. It allows us to largely reduce the
multiobjective optimization to the single objective case.
This in turn enables us to reason about multiobjective opti-
mization using theorems and algorithmic ideas developed
for the single objective case. It also allows us to simplify
our infrastructure. Finally, engineers can easily and rapidly
focus on particular parts of the Pareto frontier, e.g., by adap-
tively selecting sets of scalarizations to experiment with in
production and progressively narrowing in on regions of
interest.

After investigating the Pareto frontier, engineers may elect
to fix a tradeoff (i.e., scalarization parameters) correspond-
ing to their preferred Pareto–optimal point and use it in all
future policies. Alternatively, they may find it more natural
to express desired system behavior in terms of metric con-
straints (§2.3.1). These options may appear equivalent at
first glance, but they respond differently to changing input
and reward distributions in important ways.

auto smartchoice = CreateSmartChoice<
ExampleContext, ExampleArm, ExampleFeedback>();

ExampleContext context = ...;
ExampleArm chosen_arm;
auto feedback_handle = smartchoice.Choose(

context, default_arm, candidate_arms, &chosen_arm);

ExampleFeedback feedback = ...;
feedback_handle.GiveFeedback(feedback);

Figure 1. A simplified example of the SmartChoices API in C++.

Figure 2. SmartChoices service infrastructure. Policies are trained
in a central service and sent to client applications. Inference is
local to the client and implemented using XLA.

3 DESIGN OVERVIEW

SmartChoices has two major deployment settings: service
and in-process. In the service setting, a central service col-
lects data, trains models, and periodically transmits new
policies back to the client. In contrast, in the in-process set-
ting, data is collected and models for the policy are trained
on the client machine. Both deployment settings provide
very low latency, safety and ease of use. We discuss key
design decisions that support these properties, with more
detail provided for the service setting. Note that the same
simple SmartChoices API (shown in Fig. 1) is used in both
settings.

3.1 Service SmartChoices

The overall infrastructure for service SmartChoices is shown
in Fig. 2.

SmartChoices uses local policies, enabling client-side infer-
ence. Model graphs and weights for policies are loaded from
the service by the client application and a local model is in-
stantiated by the XLA just-in-time compiler (Leary & Wang,
2017). Client code does not have to wait for compilation
to complete before calling Choose: the SmartChoice
object will safely fall back to the default arm (see §4.2)
until a policy is ready. However, it may block on policy
readiness if preferred.

Local policies have several advantages. First, they enable
very low decision latency; for the applications in §6, typi-
cal median latency is O(10) µs and can be as low as 2 µs.
Requests to the central service are reduced. Unit tests and
production client code can use the same code paths with-
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out complex mock objects. Finally, inference is robust to
network issues, since the main application thread performs
inference without communication with the SmartChoices
service.

Using local policies does limit us to models that can fit in
RAM for a single machine. However, in practice, this is
sufficient to outperform existing heuristics for a wide variety
of applications (see §6).

Communication with the service is asynchronous and han-
dled by separate background threads. Client applications
need to communicate with the SmartChoices service to (i)
send logged data to train and evaluate new policies and (ii)
receive policy updates. This communication is handled by a
background thread initialized when the SmartChoice ob-
ject is instantiated. Logged data generated by Choose and
GiveFeedback calls are buffered in a shared queue by
the foreground thread, and then sent in batches by the back-
ground thread. Policy updates are obtained by polling the
service. As with the use of local policies, asynchronous com-
munication via background threads ensures that Choose
and GiveFeedback calls are low latency and do not block
on network issues.

Training and evaluation for all clients uses the same ser-
vice code. Logged data is sent to the service in a stan-
dard log format and contains all information required to
train and evaluate new policies. These logs are thin wrap-
pers around the Protocol Buffers defining the input, output
and feedback types (see Fig. 3). For training, Choose
logs include xt, At, at, and metadata about the policy π,
and GiveFeedback logs include the metric values yt and
the ID of the corresponding Choose call. For evaluation,
Choose logs also include the default arm and arm selection
policies. This enables code to be shared, reducing the risk
of errors or behavioral differences due to divergent code.

Common steps in the ML pipeline are automated. Logged
data is collected in a centralized database, and the service
periodically collects summary statistics on the data. If new
data is available, the service automatically begins creating
new policies. This process involves feature normalization,
training (either incremental or from scratch), model evalua-
tion, computing constraints based on desired system-level
behavior for metric-constrained optimization (§6.5), and
automated analysis and validation checks (§5.3.1) prior to
policy rollout.

In addition, hyperparameter tuning is available on demand.
By integrating with an industrial scale black box optimiza-
tion platform, we perform hundreds of training trials with
a single command, trying different architectural and train-
ing hyperparameter configurations in order to identify the
parameters that minimize loss on the evaluation holdout
dataset.

Engineers customize SmartChoices via a single configura-
tion file. Almost all of the steps in our ML pipeline can
be customized; for example, engineers can configure how
features should be normalized or what validation checks
should block a policy from being rolled out to client bina-
ries. Enabling engineers to customize all of this via a single
configuration file not only makes using SmartChoices easier
but increases the likelihood that unintended changes are
caught in code review.

Feedback is flexible. The feedback handle object re-
quired to GiveFeedback (see Fig. 1) can be restored
from an ID, allowing feedback to be provided days later in
a separate process. This is particularly useful for engineers
who are only able to measure the quality of the decision after
some delay. In addition, the Choose and GiveFeedback
calls can be tied together by an ID provided by client code;
this often significantly reduces the amount of infrastructure
engineers need to add to use SmartChoices (e.g., storing a
mapping from a SmartChoices ID to their ID).

3.2 In-Process SmartChoices

Some client applications do not want to depend on a hosted
logging and training service. Reasons include strict con-
straints around privacy or data sovereignty, a need to adapt
rapidly to recent data, or a need for even lower latency
inference (< 1 µs).

SmartChoices supports such applications either directly link-
ing in trained policies in the client binary or training locally
(i.e., within the same binary making decisions) in back-
ground threads. No data leaves the client binary in either
case. Local training enables very rapid adaptation to data:
the default latency from when feedback is provided to when
the data is trained on is 200 ms. This is configurable, with
resultant trade-offs in CPU usage and speed of adaptation.

Local training shares some key design decisions with Ser-
vice SmartChoices (§3.1). In particular, local training for
different SmartChoices applications uses the same code
paths, and engineers also customize local training via a
single configuration file.

4 SAFETY

4.1 Models as Code

To date, people express most computations in traditional
software (as opposed to ML models). This has huge ad-
vantages for building, testing, maintaining, and modifying
complex systems. However, some desired behaviors – say,
recommending good items to an end-user – do not admit
a concise description in code but must instead be learned
from data. In practice, this nearly always means defin-
ing a parametric function class mθ and then searching for
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parameters θ ∈ Θ to optimize some objective(s). This
training processes bears no resemblance to traditional soft-
ware engineering via human brains and keystrokes, and is
usually decoupled from the typical software release cycle.
Still, models are code. In theory they can implement any
function (Zhou, 2020), and in practice we see continuous
improvement in capabilities as the field progresses.

Over time, engineering best practices have tended to treat
ML models more and more like code, e.g., tracking data and
experiments and versioning models. SmartChoices builds
on this by allowing engineers to rely on their existing in-
tegration testing, canary, release, and rollback processes.
For example, engineers can choose to link trained mod-
els directly into application binaries; in this case, undoing
a problematic policy rollout is as simply as rolling back
the binary version. Alternatively, engineers can specify
environment-dependent policy tags (§5.3.3). This allows
policy updates to be first deployed in a staging environment
before being used for all production traffic.

4.2 Specifying a Default Action

We require SmartChoices users to provide a default action
when calling into SmartChoices. This has several advan-
tages. First and foremost, it provides a safe fallback in
case of any error. Even with rigorous software engineering
practice, bugs will arise: via logical errors, numerical in-
stabilities, or low level compiler bugs. Conducting model
inference in-memory on CPU allows us to detect failures
(e.g., malformed inputs, infinite predicted rewards, or er-
rors in the XLA compiler) without overhead. If a failure is
detected, we fall back to outputting the default action.

Secondly, providing the default allows us to automatically
setup a long-running “holdback” experiment, i.e., we choose
the default uniformly at random some fraction of the time
in order to A/B test our learned implementation against the
default.

Even without an explicit holdback, we can use the identity
of the default action to estimate the metrics for a policy that
always choose the default action (henceforth the “default
policy”) via counterfactual policy evaluation or CPE (Bottou
et al., 2013) .

Finally, having the default allows us to implement imita-
tion learning against the default policy and regularize to
it, penalizing deviations from it. This allows us to boot-
strap from a baseline policy that achieves the current system
performance.

4.3 Fairness

As computational systems take on increasing influence in
society, it has become increasingly important to understand
the implications, and, ideally, design systems that encourage

healthy outcomes for businesses and society at large. This
presents a vast research frontier (see e.g., Chouldechova &
Roth (2020)) that is currently actively being explored, even
at the foundational level of appropriate formal definitions
of fairness3. Still, whatever best practices around ML fair-
ness emerge over time, treating ML models as code and
fundamentally tying models to the decisions they result in
has the advantage of providing a centralized surface to de-
sign, implement, and monitor compliance with the desired
behavioral constraints in production.

4.4 Testing and Production Readiness

As noted, ML can create novel types of technical debt and
production risks. By design, SmartChoices mitigates many
of these. For example, Breck et al. (2017) suggest a rubric
for scoring ML productionization readiness. As shown
in Table 1, SmartChoices integrations automatically meet
19 of the 28 specified criteria, and manually meet 5 more
(and could be extended to automatically meet them); the
remainder are concerned with feature generation, which
remain the responsibility of engineers using SmartChoices.

As for the tests marked “manual” in the table, most have
supporting analyzes automatically performed and displayed
on the SmartChoices frontend (§5.3.2). Field sensitivity
charts show how important each feature was to any spe-
cific SmartChoices model’s performance, supporting the
identification of non-beneficial features for later removal,
and suggesting if simpler models may be better. The re-
sults of hyperparameter tuning on architectural parameters
can surface whether simpler models perform better. Auto-
matic CPE against logged data reveals the impact of model
staleness.

Another interesting case is training / serving skew, in which
feature semantics change between training time and infer-
ence time. The SmartChoices workflow discourages a com-
mon source of skew, namely the use of different code paths
in training and inference4. Any skew introduced is due to
code or configuration changes in the client system, which
can and should be tracked and audited via standard produc-
tion engineering principles. Ultimately, however, detecting
semantic changes in features requires human oversight, and
SmartChoices facilitates that by tracking feature distribu-
tions and surfacing them to engineers on the frontend.

3Some definitions are incompatible, with known impossibility
results revealing fundamental tradeoffs.

4It takes specific extra development work to enable such skew.
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Data Tests
Feature expectations are captured in a schema. Automatic
All features are beneficial. Manual**
No feature’s cost is too much. User responsibility
Features adhere to meta-level requirements. Yes (for select requirements)
The data pipeline has appropriate privacy controls. Automatic
New features can be added quickly. Automatic
All input feature code is tested. User responsibility
Model Tests
Model specs are reviewed and submitted. Automatic
Offline and online metrics correlate. Automatically measured & surfaced.
All hyperparameters have been tuned. Automatic
The impact of model staleness is known. Manual**
A simpler model is not better. Manual**
Model quality is sufficient on important data slices. Automatic (if configured)
The model is tested for considerations of inclusion. Manual**
Infrastructure Tests
Training is reproducible. Automatic
Model specs are unit tested. Automatic
The ML pipeline is Integration tested. Automatic (with proper integration)
Model quality is validated before serving. Automatic
The model is debuggable. Yes
Models are canaried before serving. Automatic (if configured)
Serving models can be rolled back. Yes
Monitoring Tests
Dependency changes result in notification. User responsibility
Data invariants hold for inputs. Yes (for selected invariants).
Training and serving are not skewed. User responsibility (mitigated per §4.4)
Models are not too stale. Automatic (if configured)
Models are numerically stable. Automatically guarded against.
Computing performance has not regressed. Manual**
Prediction quality has not regressed. Automatic

Table 1. Measuring SmartChoices against the ML Test Score
Rubric of Breck et al. (2017). Items marked ** could be made
automatic in a straightforward manner.

5 INTEGRATING WITH SMARTCHOICES

5.1 Problem and Type Specification

Users of SmartChoices begin by expressing their problem
in terms of types. Using Protocol Buffers (Google, 2008),
users define (input) Context, (output) Arm, and Feedback
types. (See examples in Fig. 3). These types, similar to
structs in C, encapsulate a collection of multiple datatypes.
Each data element inside a Protocol Buffer is described as
a field with a type and a name. Users indicate modeling
requirements for a field – such as the size of a categori-
cal feature, or whether a reward should be minimized or
maximized – via field annotations.

Protocol Buffers have several advantages: they support re-
flection and easily adding and removing fields, have cross-
language support, support compressed serialization, and are
widely used. These benefits enabled us to create generic
components for converting Protocol Buffers into encoding
tensors suitable for ML models and logging training data.
This dramatically cuts down on “glue code” and “pipeline
jungles.” Additionally, because Protocol Buffer annotations
allow SmartChoices users to configure parameters in-line
with their field datatypes, using Protocol Buffers reduces a
major source of “config debt.”

5.2 Instrumentation in User Code

To instrument their code, SmartChoices users begin by (i)
adding a build rule (Bazel, 2023) parameterized by their

message ExampleContextProtocolBuffer {
int32 category = 1 [(opts)={num_categories: 15}];
string textual = 2 [(opts)={max_length:5}];
repeated float vector = 3 [(opts)={shape: 7}];
string debug = 4 [(opts)={log_only: true}];

}

message ExampleArmProtocolBuffer {
option (arm_msg_opts) = {max_num_arms: 10};

int32 category = 1 [(opts)={num_categories: 15}];
string textual = 2 [(opts)={max_length:5}];
repeated float vector = 3 [(opts)={shape: 7}];
string debug = 4 [(opts)={log_only: true}];

}

message ExampleFeedback {
float reward = 1 [(opts)={maximize_goal{}}];
float penalty = 2 [(opts)={minimize_goal{}}];
float aux_metric = 3 [(opts)={log_only: true}];

}

Figure 3. An example context, arm, and feedback Protocol Buffer
defining an input, output and feedback type. Syntax simplified for
brevity.

configuration file as a target dependency and (ii) including
the SmartChoices library in their code.

As shown in Fig. 1, users then create a SmartChoices in-
stance at the location in code where they want to use a
learned implementation. Next, users call Choose with
a context proto as well as a set of candidate arms and a
default arm. Choose selects one of the arms based on
the policy, and handles logging the context, arms, and
choice for training. User code performs some action as
a result of the choice, and measures rewards and penal-
ties which are recorded in a feedback proto passed to the
GiveFeedback method.

5.3 Service SmartChoices: Additional Tools

Users of the SmartChoices service deployment have access
to tools that eliminating the need for custom code to analyze,
monitor, and manage machine learning pipelines.

5.3.1 Analysis and Validation

An automated analysis is run using a held-out dataset for
every newly-trained policy. Available analysis includes:
(i) the distribution of chosen arms; (ii) per-metric distribu-
tions of critic model predictions; (iii) per-metric estimates
of feature importance; (iv) per-metric CPEs comparing the
newly-trained policy to three baselines (the default policy, a
random policy, and the current “live” policy); (v) (for prob-
lems with binary feedback) the area under the receiver op-
erating characteristic curve (henceforth, ”ROC AUC”) and
the precision-recall curve; (vi) (for Pareto Frontier Search
(§2.3.2)) an estimate of the Pareto-optimal tradeoffs achiev-
able by the trained policy.

A policy is validated if analysis demonstrates that it has
“good” behavior; users can what this means by modifying
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their configuration file. By default, a policy is validated if
we have at least 95% confidence that it outperforms each of
the three baselines, with uncertainty estimated via Poisson
bootstraps (Chamandy et al., 2012) of the held-out dataset.
Additional validation checks include conditions on just the
newly-trained policy (e.g. a minimum ROC AUC) or condi-
tions comparing the newly-trained policy to the current “live”
policy (e.g. upper bounds on the statistical distance between
the distribution of chosen arms or critic model predictions).

5.3.2 Monitoring Behavior and Performance

An automatically generated web frontend shows: (i) training
progress; (ii) the logged distribution of each context, arm,
and feedback field over time; (iii) the logged reward over
time for the trained policy, a random policy, and the “default”
policy; (iv) the results of automated analysis (§5.3.1) for
any policy.

5.3.3 Managing Policy Rollouts

Policy rollouts in SmartChoices are managed through policy
tags. Each “tag” is a human-readable string referencing a
single policy, with the referenced policy updated over time.

Two tags are available by default. The “latest” tag always
references the most recently trained policy, while the “live”
tag references the most recent trained policy that was val-
idated. Users typically use the “live” policy, but custom
rollout (and rollback) strategies can be implemented via
custom tags. Client binaries periodically poll the service for
updated policies and tag references, and seamlessly switch
over to the new policies.

Policy tags also simplify exploring tradeoffs when conduct-
ing multimetric optimization (§2.3). Tags are created corre-
sponding to a range of behavior (e.g., ranging from ”treat
the first metric as 5 times as important” to ”treat the second
metric as 5 times as important”), and policies for each tag
are generated using a holdback evaluation dataset. Users
can directly reference these tags in code.

6 CASE STUDIES

SmartChoices has been successfully applied in a diverse
range of problem domains, ranging from low-level opti-
mizations (e.g., §6.1) to user-facing applications (e.g., §6.6).
We select a representative sample that motivates each of
the capabilities introduced in §2 and demonstrates how
SmartChoices’ design (§3) enables engineers to success-
fully apply ML in their systems.

Client using existing capabilities (e.g., §6.4) have integrated
SmartChoices with O(days) engineering time. Additional
engineering work can be required to make features available
at Choose time (see Fig. 1) or measure the quality of the

choice.

6.1 Learned Cache Eviction

SmartChoices reduced the fraction of user-requested bytes
missed in a Content Delivery Network (CDN) cache for a
large-scale video service by improving its eviction policy.
This reduced latency for end users, improved several quality
of experience (QoE) metrics and lowered the cost of content
distribution.

The learned eviction policy first uses a heuristic to select 4
promising candidates, and then uses SmartChoices to run a
2-stage tournament selection to pick the item to evict. Many
heuristics are suitable, but in practice we found selecting
the 4 least recently used (LRU) items works well. Feedback
is binary: 1 if the next access time for the SmartChoices-
selected entry was the latest among the candidates it was
compared with, and 0 otherwise.

Two SmartChoices features were key to a successful launch:
its low latency (§3) enabled timely individual cache evic-
tion decisions, and efficient in-process model training (§3.2)
eliminated the need for transfer training data between edge
servers and data centers while imposing only minimal com-
pute overhead. In addition, using SmartChoices on top of
a decent heuristic (LRU) provided additional production
safety, guaranteeing acceptable performance during initial
training and later adaptation to new usage patterns. Using
SmartChoices decreased the portion of user-request bytes
missed by 9.1% at peak traffic, representing a significant
improvement over highly-tuned code.

6.2 Optimizing Compilation

Figure 4. Kernel embedding consumed as input by SmartChoices.

SmartChoices achieved performance gains in a compiler by
enabling compiler parameters to be dynamically adjusted,
e.g., in response to changes to other components.

ML workloads consume enormous amounts of compute in
large industrial settings. Specialized accelerators such as
Tensor Processing Units (TPUs) are increasingly used for
model training and inference. The XLA compiler (Leary
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& Wang, 2017) generates code that can run on these ac-
celerators; optimizing the compiler can improve latency,
throughput and cost. Tile size selection (Rivera & Tseng,
1999) is one of the most performance-critical optimizations
in the XLA TPU compiler, affecting how tensors are moved
between distinct levels of the memory hierarchy. The goal is
to select an optimal tile size for a high-level operation (HLO)
such that its input and output tensors fit in the scratchpad
memory, while minimizing its execution time.

Concretely, we must choose from a finite set of arms At ⊂
Rd≥0 for operation t, where d is an upper bound on the sum
of tensor ranks of all inputs to an operation we wish to
consider for optimization.

A naive approach is exhaustive search over all tile sizes.
However, since each HLO has a large number of valid tile
sizes, and the optimal tile size frequently changes due to
active development of the XLA compiler, exhaustive search
is intractable.

Existing search-based techniques such as TVM (Chen et al.,
2018) cannot be deployed in the XLA compiler since they
assume that optimization decision can be made indepen-
dently from the rest of the graph and require optimizations
to be applied at the same stage in the compilation flow.
(Phothilimthana et al., 2021)

Instead, using arm features (§2.1), SmartChoices is used
to filter out 99% of candidates, with an exhaustive search
applied to the remaining 1%. We begin by pretraining a
learned cost model (Phothilimthana et al., 2019) that pre-
dicts the TPU runtime of an HLO using an historic dataset
of actual runtimes. To keep up with changes to the com-
piler, we fine-tune the model periodically, freezing the
graph-embedding network (Fig. 4) and retraining only the
feed-forward head. Continuous training (§3.1) for the feed-
forward head allow us to stay up to date while avoiding
the full cost of end-to-end training. Searching over the can-
didates selected by SmartChoices achieves 90 − 95% of
the speedup achieved by full exhaustive search, scales to
optimize all relevant HLOs (vs. 5% coverage for the prior
exhaustive search), and is about 29 times faster overall.

6.3 Optimizing Thread Counts

SmartChoices reduced tail latency for end-user queries on a
flight booking search service by optimizing thread count.

When processing an end-user query, the service first de-
termines all relevant sequences of flights, or “itineraries”.
The service then retrieves fares for all subsequences of each
itinerary. As itineraries can largely be processed indepen-
dently, this work can be parallelized across multiple threads.

A fixed thread count of four resulted in reasonable system-
wide performance. However, experimental data demon-

strated that complex end-user queries benefited significantly
from more threads.

For each query, SmartChoices dynamically selected the
thread count based on context including the number of flight
sub-sequences and the source and destination regions. We
then measured latency and CPU usage for that query, pro-
viding both as feedback. The resulting contextual bandit
policy selects the thread count that minimizes a weighted
linear combination of both measures.

SmartChoices’ support for mixed-type context (§2.1) via
automatic conversion of Protocol Buffers into encoding
tensors (§5.1) enabled rapid experimentation with different
context features. At launch, average latency reduced by
25% and P99 latency reduced by 16% without a significant
increase in CPU cost.

6.4 Optimized Work Partitioning

SmartChoices improved data availability and freshness for
a service that monitors machine learning workloads via
dynamic work rebalancing (Kirpichov & Denielou, 2016)
between monitoring tasks.

Each monitoring task summarizes telemetry (e.g., RAM
and accelerator usage) for a list of workloads. Tasks that
are too large will take a long time to complete, resulting in
stale or missing data. In contrast, tasks that are too small
incur unnecessary overhead, and can result in outages if the
monitoring workload exceeds its allocated capacity.

When a monitoring task begins running, it can either shard
(scheduling two smaller tasks covering the relevant work-
loads) or execute. SmartChoices optimizes this decision.
The reward for shard is always zero, while the reward
for execute is the difference td − te between the target
maximum data staleness td and the actual execution time te.

This approach encourages sharding only tasks for which the
expected execution time is greater than the deadline td. The
reward formulation allows feedback to be provided to the
model immediately for continuous re-training. Context for
each decision includes information about the data source
being queried, the number of entities contained in the shard
and the time and day of the week.

As in §6.3, SmartChoices’ support for mixed-type context
enabled rapid experimentation with context features. In
addition, automated training and validation (§3.1) enables
policies adapting to changes in query distributions (e.g.,
from a sudden increase in long-running queries) to be de-
ployed daily.

Using SmartChoices significantly reduced alerts on missing
or stale data, translating directly into time savings for the
team responsible for maintaining the service. In addition,
53% fewer tasks hit the execution deadline.
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6.5 Optimizing Refresh Rates

Figure 5. Use of SmartChoices in the ads service. The app con-
tinues to send ad requests as before. Throttling requests in
the ad server allows us to skip subsequent steps, including the
computationally-costly auction.

SmartChoices optimized resource usage on ad refreshes
for an ads service supporting a widely used product. Ads
viewed by users are stored locally within an app on their
mobile devices, and these ads are periodically refreshed via
the process shown in Fig. 5 so that users can view new ads.
The computational resources used to run the ad auction to
fulfil the refresh request are considered to be wasted if the
refreshed ad is not viewed.

The Ads team used SmartChoices to throttle those ad re-
quests from the app that are less likely to result in an ad view.
SmartChoices uses constrained optimization (§2.3.1) to do
so. Feedback for training is binary: 1 if the ad is viewed and
0 otherwise.

The SmartChoices policy involves a critic model predicting
the probability that refreshing the ads will result in an ad
view (pView), with requests with pView below a threshold
q throttled. q controls the tradeoff between resource usage
and the number of ad views (and downstream metrics such
as clicks). Increasing q saves more resources at the potential
cost of a reduction in views. In practice, we found that
different tradeoffs are appropriate for different device types;
as such, we use a single critic model to predict pView but
specify q0, q1, ... per device type.

Instead of selecting a fixed threshold, the Ads team wanted
to ensure that SmartChoices throttled approximately the
same fraction of traffic over time. We eliminated the need
for manual tuning when training a new model by automat-
ically computing the appropriate pView threshold based
on the distribution of that model’s predictions on a holdout
dataset.

To guarantee that policy updates do not drastically impact
downstream systems, we compare throttling decisions of the
“live” policy with new policies during validation (§5.3.1).
New policies are validated for use only if the change in
throttling decisions is minimal for all device types.

SmartChoices was deployed in three stages. Overall, ad
requests to ad servers were reduced by 5.8% while views
increased by 6.3%.

1. Phase 1 reduced in ad requests to ad servers of 12%,

with no change in views and downstream metrics.

2. Phase 2 removed a heuristic filter on inactive users.
This increased views by 1.4% with only a 4% increase
in ad requests.

3. Phase 3 doubled the frequency of ad requests from the
client app while adjusting the thresholds on pView.
This increased views by 4.8% with only a 2.2% in-
crease in ad requests.

6.6 Optimizing User Experience

SmartChoices improved user-engagement metrics across a
variety of User Experience (UX) optimization applications
by identifying the best of a set of human-designed candidate
options. Example applications include:

• Selecting the best notification string to inform a user
that their storage space is running low or has been
exhausted.

• Selecting the best notification string to inform a user
about new personalized curated content for them.

• Selecting the best string during mobile device onboard-
ing, to guide the user to enable features of interest.

For these applications, using SmartChoices yielded a 2% to
10% improvement in user-engagement metrics.

Prior to SmartChoices, the typical solution for such UX
optimization problems was A/B testing. This approach has
several disadvantages:

• Poor scalability: Setting up and running each A/B
experiment is a manual process, typically requiring
significant engineering effort. As such, the number
of such live experiments teams run is usually much
smaller than the number of potential applications they
want to optimize.

• Limited personalization and contextualization:
The candidate that performs best overall may not be
the best for a specific sub-population of users or in
specific scenarios (for example, if the same user is us-
ing a different device). Optimizing for each contextual
feature potentially requires a separate A/B experiment.

• Non-adaptive: After conducting one A/B experiment,
the teams usually do not know whether the best-
performing candidate has changed unless they conduct
another A/B experiment.

SmartChoices addresses all of these issues. Continuous
model re-training, validation and deployment (§3.1) enables
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SmartChoices to adapt to external changes automatically.
With contextual bandits at its core (§2.1), SmartChoices
takes advantage of contextual and/or user features to opti-
mize for specific users. Simple APIs (see Fig. 1) abstract
away cumbersome machine learning workflows, enabling
SmartChoices to be easily integrated with multiple applica-
tions.

Indeed, these advantages over traditional A/B testing were
the primary reason the teams adopted SmartChoices. Al-
though initial adoption usually entails some upfront effort,
teams are usually able to easily expand SmartChoices to
related applications after the initial integration.

6.7 Ranking Recommendation Cards

SmartChoices increased the rate at which business owners
completed tasks by optimizing the order in which recom-
mendation cards are displayed.

Each card prompts business owners (here, “users”) to com-
plete a different action (e.g., upload phone numbers, respond
to custom reviews). Our goal is to show the most relevant
cards to users. Ordering affects visibility; only the first three
items are visible without scrolling.

Prior to using SmartChoices, cards were simply ordered by
their global click-through rates (CTR). SmartChoices was
deployed in two phases:

1. Phase 1 used click-based feedback, with a reward of 1
when end-users click on a card and 0 otherwise. We
used this feedback since we expected optimizing CTR
contextually to improve overall CTRs. Other important
metrics also saw significant improvements: 8.7% more
users interacted with cards, and the count of 28-day
active users increased 27%.

2. Phase 2 used task completion feedback, with a reward
only when end-users completed the task for a card.
This problem framing allowed us to focus on the most
important tasks by appropriately scaling rewards. For
example, 0.8% more users updated their business pro-
file, while 2.2% more users visited a page summariz-
ing for their profile. This represented a significant in-
crease on a large user base. While CTR decreased, we
observed no change to the overall task completion rate,
indicating a reduction in low-task-completion-intent
clicks.

Once again, automated training and validation (§3.1) en-
ables policies to to adapt to seasonal changes automatically;
for example, the “Holiday Hour Edits” card is automatically
ranked higher before local holidays.

R L DS SC
Ranking X X(§2.2)
Pareto Frontier Search X X(§2.3.2)
Constrained Optimization X(§2.3.1)
Evaluation via CPE X X X X(§5.3.1)
Software-centric API X X(§5)
Resilient to Service Outage X X(§3.1)
Local Low-Latency Inference X(§3.1)

Table 2. A comparison of SmartChoices against other projects de-
ploying ML for decision making within production systems on
key features. R: ReAgent, L: Looper, DS: Decision Service, SC:
SmartChoices.

7 RELATED WORK

Carbune et al. (2019) presented an earlier prototype of
SmartChoices. The version we present here has some sig-
nificant differences based on our production experience,
most notably a focus on contextual bandits over general
reinforcement learning5, assorted safety features, and a ser-
vice architecture. Abadi & Plotkin (2021) explored how
programming languages can be endowed with operational
and denotational semantics corresponding to learned deci-
sion policies (including stochastic ones), and prove these
semantics coincide.

Several other projects have explored related aspects of how
to effectively deploy ML for decision making within pro-
duction systems. We summarize key differences in Table 2,
with more detail provided below.

ReAgent (Gauci et al., 2018) (previously known as Hori-
zon) is a platform for reinforcement learning in production
with similar goals as SmartChoices but different feature
sets. SmartChoices differs on ease of use (e.g., provid-
ing more automation for data preprocessing, training, and
model updates), modeling emphasis (e.g., multimetric opti-
mization [§2.3]), and scope (e.g., suitability for low–level
applications like §6.1).

Looper (Markov et al., 2022) is an end-to-end platform
for training and deploying machine learning models, with
particular emphasis on optimizing product goals with param-
eterized decision functions which the authors call “smart
strategies,” using a combination of immediate observations
(for each decision) and product metrics (measured from
the aggregate effect of a large set of decisions). In effect,
it trains models for all observed metrics, then optimizes
over a class of parameterized “strategy blueprints” with re-
spect to long-term product metrics using a sequence of A/B
tests selected via Bayesian optimization. Unlike Looper,
SmartChoices is not tightly integrated with an A/B experi-
ment framework and doesn’t have a direct notion of product
goals6. Additionally, Looper must be called via RPC, and

5To be clear, our design accommodates RL quite naturally.
6In practice, a grid search over SmartChoices scalarization
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requires users to implement fallback logic in case of failure,
in contrast to our default action. Finally, Looper’s median
inference latency is reported at 2 ms, and feature extraction
latency at 45 ms – about 3 orders of magnitude slower than
SmartChoices – preclude its use in many systems applica-
tions.

Microsoft’s Decision Service (Agarwal et al., 2016) pro-
vides a service for contextual bandits, and shares many
design goals with SmartChoices. As a cloud service, it has
hosted logging, training, and inference, however it also sup-
ports loading models into the client for faster local decision
making. SmartChoices has considerably lower decision la-
tency, however, making it suitable for additional low level
system optimizations (as low as O(1) µs vs. a reported
average latency of 0.2 ms in (Agarwal et al., 2016)), as well
as capabilities beyond standard contextual bandits (c.f., §2).

Natarajan et al. (2020) investigate programming by re-
wards (PBR), whereby system performance can be used
to aid the programming process – either by filling in values
from a user-provided template (i.e., programs with miss-
ing constants), or by generating programs within a lim-
ited class representable by fixed–depth decision trees. Like
SmartChoices, PBR searches for a reward maximizing im-
plementation, however it is restricted to learn functions of
type Rm → Rn, owing to the type of training used. It
has a different deployment model in which learned imple-
mentations are translated directly into source code that is
checked-in. This has advantages in terms of interpretabil-
ity, speed, and avoiding additional dependencies. However,
only a restricted of class of implementations are considered,
and there are no affordances for adapting implementations
to changing environments over time.

Two classes of problems similar to contextual bandits are
bayesian optimization (BO) and reinforcement learning
(RL). BO focuses on the low-data regime where gather-
ing feedback is expensive; in contrast, we focus on settings
with more abundant data. In the RL setting, the arm selected
at time t affects the next context xt+1. Since a large class of
practical optimizations can be framed as a contextual bandit
problem, we have not yet needed to support RL.

Contextual bandit models have been used across industry to
solve a wide range problems. For example, contextual ban-
dits can replace the typical A/B testing process for deciding
on UI changes. Instead of manually comparing the relative
performance of two fixed UIs, contextual bandits can learn
to personalize UI elements to maximize each user’s expe-
rience. Prominent examples include deciding the relative
position of news stories (Li et al., 2010), selecting thumbnail
artwork for video content (Amat et al., 2018), and ordering

parameters has sufficed for many applications. Also, there’s no
fundamental obstacle to automating this parameter search.

products on a “carousel” (Ermis et al., 2020). Industrial ap-
plications also use contextual bandit models in the backend
to solve problems in dynamic or ambiguous environments.
These use cases include disambiguating ambiguous verbal
requests of smart speakers (Moerchen et al., 2020), personal-
izing the recommendations of products (Sawant et al., 2018),
and determining user “intent” when interacting with support
chat bots (Sajeev et al., 2021). The wide range of applica-
tions speaks to the huge potential impact of an approach like
SmartChoices that accelerates improving systems with ML.
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