Validation and Analysis of Hypothesis Generation Systems

Justin Sybrandt

Talk Outline

Warning: is actually two talks

• Overview + Background

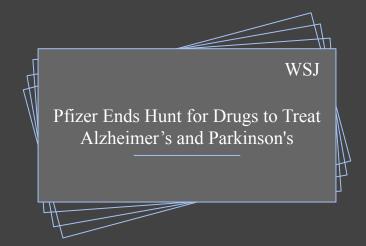
 Large-Scale Validation of Hypothesis Generation Systems via Candidate Ranking

• Are Abstracts Enough for Hypothesis Generation?

Overview

Problem Overview

- Medical research is expensive and risky
- Text mining can identify fruitful research directions before expensive experiments



Hypothesis Generation

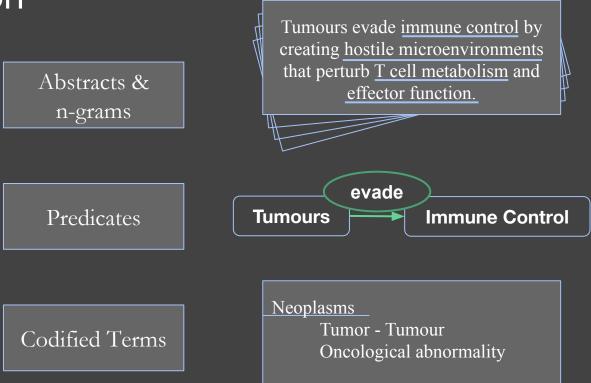
- NIH provides 27 million abstracts
- 2-4 thousand added daily
- Lack of communication leads to undiscovered connections
- Hypothesis generation finds *implicitly* published relationships

Pub Med

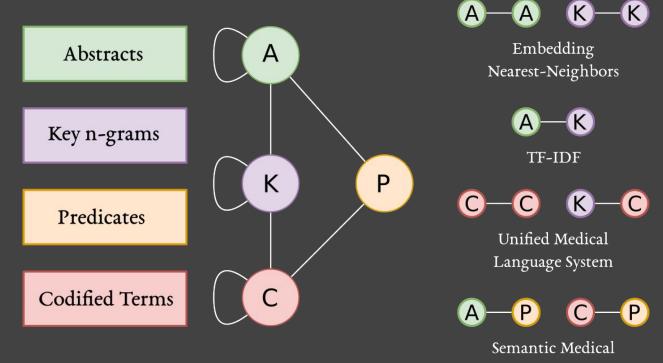
Automatic Biomedical Hypothesis Generation System

- Presented at KDD'17
- Validated against small number of historical examples
- Relied on expert input to interpret results
- Original Pipeline
 - Data Collection
 - Network Construction
 - Relevant Abstract
 Identification
 - Topic Modeling

Data Collection



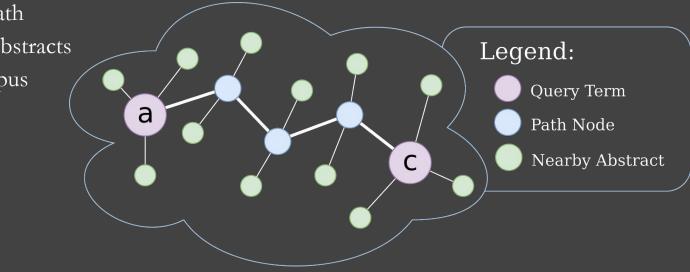
Network Construction



Database

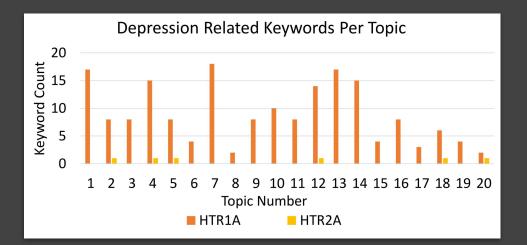
Relevant Abstract Identification

- Select two query nodes
- Find shortest path
- Locate nearby abstracts
- Collect sub-corpus



Extract Information

- Apply LDA topic modeling
- Explore patterns in fuzzy clusters
- Original limitations:
 - Expert analysis
 - No numerical results
 - Lots of data, time consuming



Large-Scale Validation of Hypothesis Generation Systems via Candidate Ranking

Justin Sybrandt¹, Michael Shtutman², Ilya Safro¹

¹ Clemson U. - School of Computing ² U. of S. Carolina - Drug Discovery and Biomedical Sciences

Validation

Does it work?

- Challenges
 - Lack of datasets
 - Problematic false positive / negative
- We propose a scalable approach
- Verification through lab studies

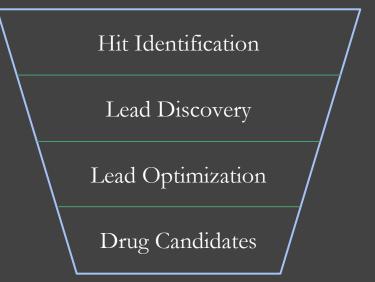
Existing Validation

- Existing validation methods [1]
 - Replicate Swanson's experiments
 - Statistical evaluation
 - Incorporate expert opinion
 - Publish in medicine
- Complications
 - Human in the loop
 - Consumes expert time
 - Small validation sets

[1] M. Yetisgen-Yildiz and W. Pratt, "Evaluation of literature-based discovery systems," in Literature-based discovery. Springer, 2008, pp. 101–113.

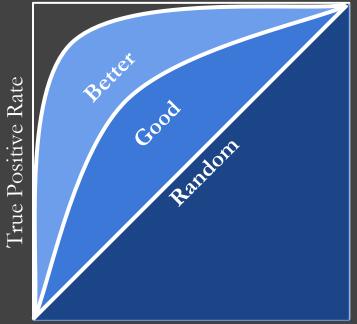
Drug Discovery and Candidate Selection

- Drug companies must prioritize investments
- Thousands of targets narrow to handful of candidates
- Drug discovery is a ranking problem



Validation through Candidate Ranking

- New validation approach inspired by drug discovery
- Rank recent hypotheses by plausibility
- Requires
 - Positive & negative samples
 - Ranking criteria
- Produces area under ROC curve



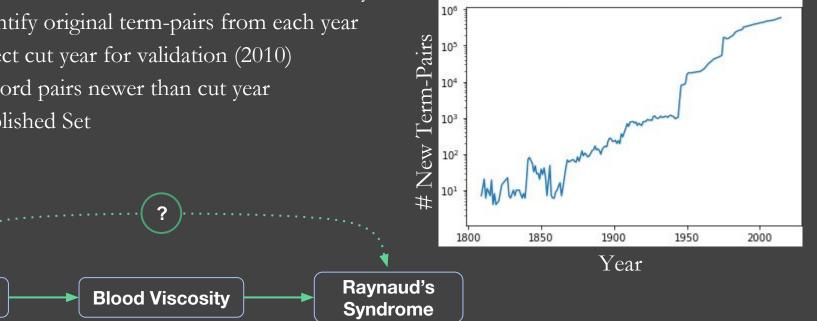
False Positive Rate

Collecting Recent Hypotheses

- Assume abstracts are a reasonable summary \bullet
- Identify original term-pairs from each year •
- Select cut year for validation (2010) •
- Record pairs newer than cut year ۲
- Published Set

Fish Oil

Prevalence of New Hypotheses in Medical Literature

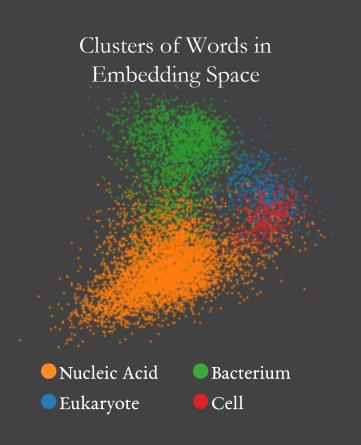


Collecting Negative Samples

- Select term subset present at cut year
- Randomly pair terms
- Record sampled pairs that do not occur in literature
- Generate samples equal to published set
- Noise Set

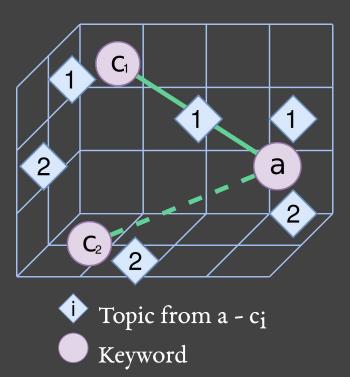
Creating a Ranking Criteria

- Extract numeric features from topic model results
- Learn correlation between features and plausibility
- Generate a collection of measurements
 - Embedding based
 - Topic network based



Embedding Measurements

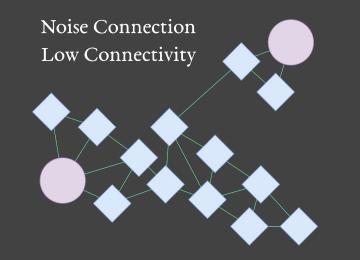
- Connected terms should...
 - Be similarly embedded
 - Share nearby topics
- Topic embeddings from centroids
- Measure L₂ distances and cosine similarity



Topic Network Measurements

- Place terms and topics in network
- Edges formed by nearest-neighbors in embedding
- Add edges until path between terms appears
- Observed different network properties

Published Connection High Connectivity

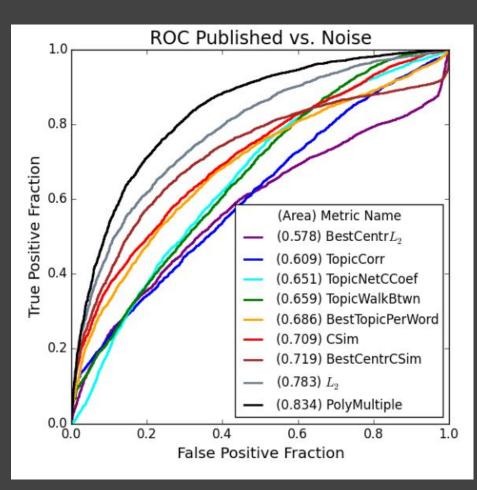


Polynomial Combination

- Each previous metric is heuristically backed
- Polynomial combination provides
 - Interpretable results
 - Improved performance
 - Easy fitting

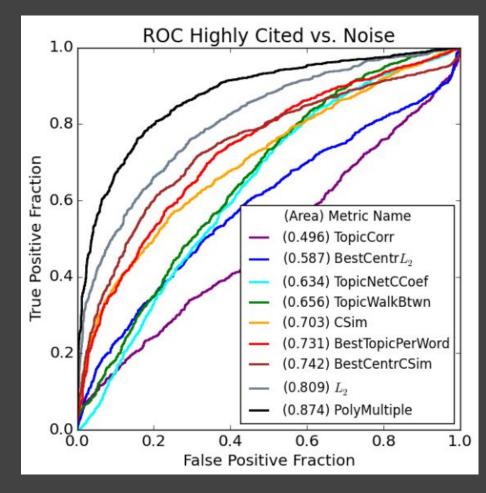
Results

- Represents 8,638 queries
- Cut year 2010
- Polynomial is top performer
- L_2 shows strength of embedding
- Topic information adds signal



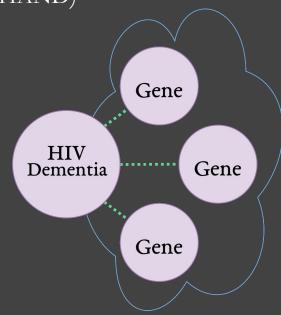
Results Highly Cited

- Represents 2,896 queries
- Subset to papers with 100 citations
- Performance improved
- Similar order of metric performance



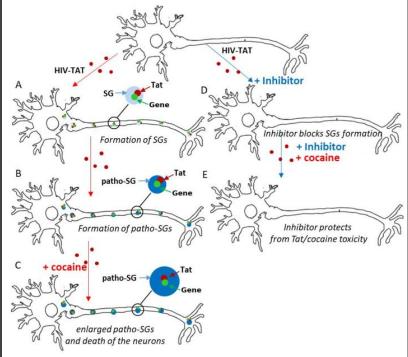
Verification in Lab Experiments

- Want to show that ranking method extends beyond validation experiment
- Focus on HIV-associated Neurodegenerative Disease (HAND)
 - $\sim -30\%$ of HIV patients over 60 have dementia
 - $\sim -7\%$ is typical rate
- Ran over 30k queries



New HAND-Gene Connection

- DDX3 identified in top 10% of genes
- Previously studied in relation to cancer
- Unexpected in this context
- Support from wet lab experiments
 - Rapidly age HIV+ neurons with cocaine
 - Cells with DDX3 inhibited survive
 - Cells with DDX3 active die



Summary : Validation

- Introduces a new validation method based on candidate ranking
 - Does not rely on expert input
 - Scales to large validation sets
- Proposed ranking metrics
 - Embedding based
 - Topic network based
- Validated our system, Moliere
 - Published vs. Noise
 - Highly Cited vs. Noise
- Applied ranking to real-world application
 - HIV associated dementia



Are Abstracts Enough for Hypothesis Generation?

Justin Sybrandt, Angelo Carrabba, Alexander Herzog, Ilya Safro

Clemson U. - School of Computing

Motivation

- We now have a method to evaluate overall system performance
- Interesting questions:
 - What effect does <u>corpus size</u> and <u>document length</u> have on results?
 - How <u>sensitive</u> is a hypothesis generation system to input qualities?
 - How <u>many papers</u> does a hypothesis generation system need?
 - <u>Are abstracts enough?</u>

Challenges with Full Text

- Larger documents
 - \sim ~15.6x more words
- Expensive to acquire
 - Abstracts are free
- Harder to parse
 - Figures, tables, references
 - Often must parse PDFs

Input Data from Other Systems

- Titles Only
 - ARROWSMITH 1986
- Titles and Abstracts (+ external sources)
 - Moliere 2017
 - Disease-Connect 2015
 - BrainSCANr 2010
 - o ...
- Full Text
 - Watson for Drug Discovery 2014

Input Data from Other Systems

- Titles Only
 - ARROWSMITH 1986
- Titles and Abstracts (+ external sources)
 - Moliere 2017
 - Disease-Connect 2015
 - BrainSCANr 2010
 - o ...
- Full Text
 - Watson for Drug Discovery 2014
 - [2] Spangler, Scott. Accelerating Discovery: Mining Unstructured Information for Hypothesis Generation. Chapman and Hall/CRC, 2015.
 - [3] He, Qi, Ming Ji, and W. Scott Spangler. "Mining strong relevance between heterogeneous entities from their co-occurrences." U.S. Patent Application No. 14/279,617.

- Proprietary system
- Designed after
 - recommender systems [2]
- Most inference on term-document matrix [3]

Methodology

- Create datasets of variable corpus size and document size
 - Free abstracts from PubMed
 - Free full texts from PubMed Central
- Construct multiple "instances" of Moliere
 - Rebuild embedding, network, and queries
- Use previously discussed validation and ranking
 - Cut year 2015

Considered Corpora

- From PubMed
 - Entire dataset
 - Randomly sampled 1 / 2
 - Randomly sampled 1 / 4
 - Randomly sampled 1 / 8
 - Randomly sampled 1 / 16
- From PubMed Central*
 - Full Texts
 - Abstracts

* We restrict PMC to only papers released in plain text that contain abstracts.

Input Dataset Comparisons

	All of PubMed	PMC Full Text
# Documents (Millions)	24	1
Median Words Per Document	71	1,594
Unique Words (Millions)	2.4	6.5
Total Words (Billions)	1.85	1.86

Input Dataset Comparisons

_	PMC Abstracts	PMC Full Text
# Documents (Millions)	1	1
Median Words Per Document	102	1,594
Unique Words (Millions)	0.67	6.5
Total Words (Billions)	0.1	1.86

Input Dataset Comparisons

_	PMC Abstracts	1 / 16 PubMed
# Documents (Millions)	1	1.5
Median Words Per Document	102	71
Unique Words (Millions)	0.67	0.35
Total Words (Billions)	0.1	0.1

PMC vs. PubMed Quality Comparison

- PubMed contains some questionable "abstracts"
 - Translated
 - Incomplete records
 - Scanned from older documents
- PubMed Central
 - Much more recent
 - Authors submit their own full-text papers
 - Conform better to modern publication standards

Int J Trauma Nurs. 1999 Jan-Mar;5(1):38. **Just do it!** <u>Feury KJ¹.</u> PMID: 10085830

J Fam Pract. 1999 Mar;48(3):230.

Ugly stepchildren?

<u>Young R</u>.

PMID: 10086771

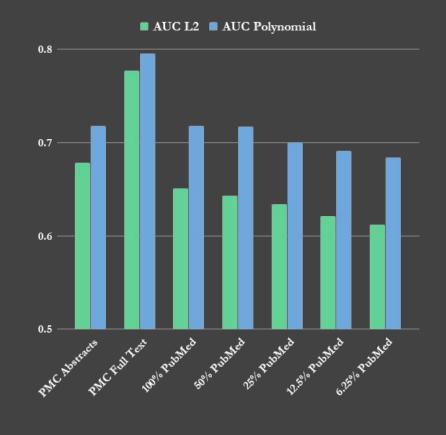
Experiments

- Collected 2,000 validation pairs
 - Cut year 2015
 - Term pairs shared across all corpora
- Trained entire Moliere system per corpus
 - Embedding
 - Phrase Mining
 - Network Construction
 - Queries
 - Training Polynomial

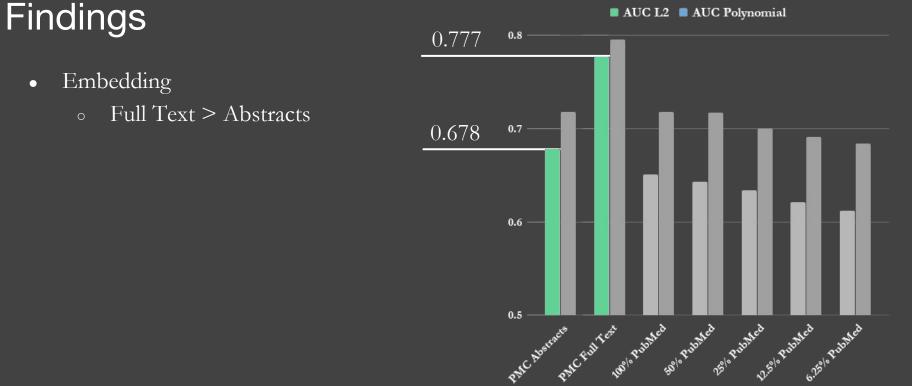
Results overall

- We present full results in paper
- Focus here on L₂ and Polynomial
 - \sim L₂ evaluates embedding quality
 - Polynomial evaluates max performance

 Lower performance than previously discussed. This work embeds text in R¹⁰⁰ while the previous embeds in R⁵⁰⁰.

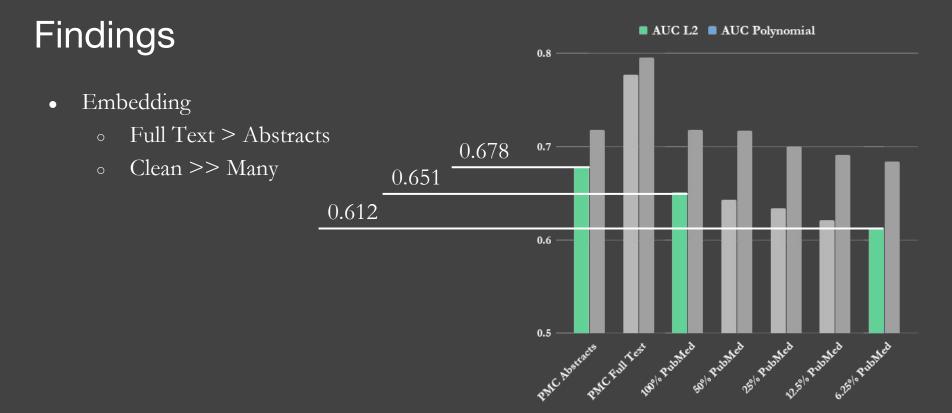


40



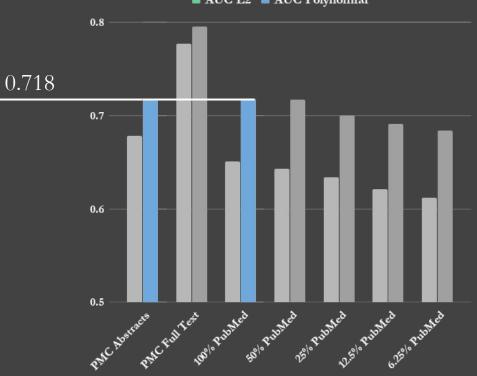
 \bullet

AUC L2 AUC Polynomial



Findings

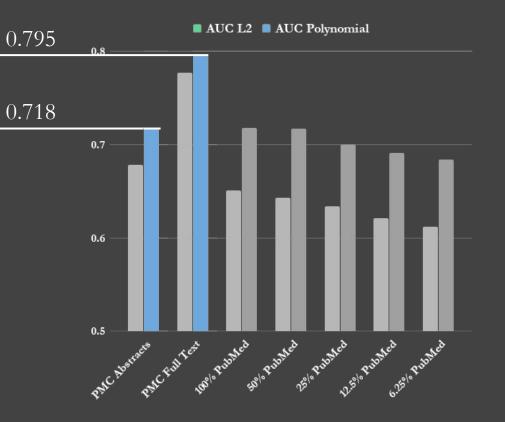
- Embedding
 - Full Text > Abstracts
 - Clean >> Many
- Max Performance
 - \circ Clean = Many



AUC L2 AUC Polynomial

Findings

- Embedding
 - Full Text > Abstracts
 - Clean >> Many
- Max Performance
 - \circ Clean = Many
 - Full Text > Abstracts



The Downside to Full Text

- Increased single query runtime from 100s to \sim 4,500s
 - May <u>be reasonable for specific searches</u>
 - Does not scale to large candidate experiments
 - Most runtime during LDA topic models
- Full text topics are less interpretable

Answers

- What effect does <u>corpus size</u> and <u>document length</u> have on results?
 - Increasing either helps
 - Document length has more effect than corpus size
 - Documents that are too long negatively affect topic interpretability
- Effect
 - Removing very short documents likely to boost overall performance
 - Using automatically generated summaries may balance performance

Answers

- How <u>sensitive</u> is a hypothesis generation system to input qualities?
 - Significantly sensitive to short noisy documents
 - Performance predicated upon embedding
- Effect
 - Pre-trained word embeddings may boost performance

Answers

- How <u>many papers</u> does a hypothesis generation system need?
 - ~1 million perform well
 - Quality > Quantity
- Effect
 - Lower barrier to entry for cross-domain applications

Summary : Are Abstracts Enough?

- Explored multiple input corpora
 - PubMed vs. PubMed Central
- Found that longer documents increase performance
 - PMC abstracts are longer than Medline
 - Longer documents > larger quantity
- Significant runtime tradeoff
 - 45x runtime for 10% improvement
- Answer depends on the application

