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Abstract

Biomedical research papers often combine disjoint concepts in novel ways, such as when
describing a newly discovered relationship between an understudied gene with an
important disease. These concepts are often explicitly encoded as metadata keywords,
such as the author-provided terms included with many documents in the MEDLINE
database. While substantial recent work has addressed the problem of text generation in
a more general context, applications, such as scientific writing assistants, or hypothesis
generation systems, could benefit from the capacity to select the specific set of concepts
that underpin a generated biomedical text. We propose a conditional language model
following the transformer architecture. This model uses the “encoder stack” to encode
concepts that a user wishes to discuss in the generated text. The “decoder stack” then
follows the masked self-attention pattern to perform text generation, using both prior
tokens as well as the encoded condition. We demonstrate that this approach provides
significant control, while still producing reasonable biomedical text.
Reproducability: All code, data, pre-trained models, and experimental parameters
are available online: https://sybrandt.com/2020/cbag

Introduction 1

Scientific papers often combine a range of disconnected concepts in novel patterns, 2

following the typical research strategies of many scientists [1]. Therefore, we anticipate 3

that future applications, such as scientific writing assistants, will produce more usable 4

results if they are informed of the user’s particular concepts of interest. This presents 5

two challenges that we find to be unexplored in the modern text generation literature. 6

Firstly, the number of concepts a user might wish to include is highly variable. Secondly, 7

the range of concepts a user might wish to select from is large (tens of thousands). 8

Therefore, we present the Conditional Biomedical Abstract Generation (CBAG) model, 9

which enables controlled generation of biomedical abstracts. 10

While many transformer-based [2] Natural Language Processing (NLP) models have 11

debuted in recent years, such as the popular BERT [3] and GPT/GPT-2 models [4, 5], 12

as well as derivative models specialized for scientific text, including SciBERT [6] and 13

BioBERT [7], there has been less work on conditional language modeling. The CTRL 14

model [8], while enabling conditional text generation, does so by specifying a small fixed 15

set of tokens that prefix an input sentence before applying the GPT-2 architecture. We 16

find that this technique, while effective for applications like style transfer, where the 17

number of “styles” is relatively small, is not expressive enough for conditioned 18

generation of biomedical text. We find the same limitation with older conditional 19
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models, such as those designed for image captioning systems [9], that generate text 20

given a single image encoding. More generalizable methods, such as those produced by 21

variational auto-encoders [10], can capture rich latent language semantics, but cannot 22

straightforwardly encode domain-based information, such as a set of keywords one 23

wishes to include in the output text. 24

The CBAG model is a transformer featuring a shallow encoder stack to encode 25

qualities of the condition and a deep decoder stack to produce a high quality language 26

model. We train this model using semi-supervised multi-task generative pre-training, 27

wherein to minimize our proposed objective function, the model must predict successive 28

tokens, parts of speech, dependency tags, as well as entity labels. We train this model 29

using over 20-million biomedical records provided by the National Library of Medicine 30

(NLM) through the MEDLINE database. Each record consists of a title, abstract, 31

publication year, and an optional set of author-provided keywords. Text processing and 32

annotations are provided by a biomedical NLP model trained on the “BIONLP13CG” 33

BioCreative training set [11]. This pre-trained domain-specific model allows the CBAG 34

model to apply the knowledge gain from the relatively small human-annotated dataset 35

to a much larger set of unstructured text from MEDLINE. We train the proposed model 36

by sampling textual windows from within MEDLINE abstracts. The publication date, 37

and any author-supplied Medical Subject Headings (MeSH terms, a set of biomedical 38

keywords and phrases) form the condition. Windows are split into subword units using 39

the unigram subword-regularization [12]. Using masked-self attention, we train the 40

model to predict each subword i+ 1 using only the condition and tokens 1, . . . , i. 41

We compare the CBAG model to two versions of GPT-2. First, we consider the 1.5B 42

parameter version of the model, but due to technical limitation we do not finetune this 43

model for abstract generation. However, prior work has identified that the GPT-2 “huge” 44

model can, without finetuning, succeed in a range of specific tasks across domains, such 45

as language translation, question answering, and commonsense reasoning [5], as well as 46

function as a general-purpose knowledge base [13]. We secondly consider a smaller 47

finetuned version of GPT-2 (124-million parameters) for abstract generation. Across all 48

models, we compare generation quality through n-gram recall metrics. 49

We evaluate computer-generated abstracts based on their ability to produce relevant 50

n-grams that occur in the human-written abstract associated with the input title. We 51

leverage a range of Natural Language Generation (NLG) metrics [14], such as Bleu, 52

METEOR, ROUGE-L and CIDEr, including a version of CIDEr that omits input 53

n-grams from consideration. We find that even though CBAG was only trained on 54

biomedical abstracts, a much smaller dataset than the GPT-2 models were initialized 55

on, it performs similarly to the GPT-2 finetuned model on n-gram recall. However, we 56

also demonstrate qualitatively that the CBAG model is capable of generating highly 57

controlled textual output by speficiying different conditions to the same input text. 58

The remainder of this paper is organized as follows: In Background we provide an 59

overview of language modeling and the transformer architecture. In Multi-Conditional 60

Language Model we describe the methodology behind the CBAG model, which 61

specializes the transformer architecture for generating biomedical abstracts. In Data 62

Preparation we describe the implementation details related to processing the MEDLINE 63

database for input into CBAG. In Results we present both qualitative and quantitative 64

comparisions between abstracts generated by CBAG, original human-authored 65

abstracts, and abstracts generated by the similar GPT-2 model. In Related Work we 66

discuss the similarities and differences between our proposed method and a collection of 67

contemporary techniques for working with similar textual data. In Future Challenges 68

and Ethical Considerations we discuss the future direction of works like CBAG as well 69

as the ethical implications therein. 70

Our contribution: We present CBAG, a transformer-based language model for 71
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conditional biomedical abstract generation. Trained using MEDLINE records and 72

informed by semi-supervised domain-specific annotations, this model captures 73

biomedical jargon, entities, and pattern of scientific discussion. We compare this model 74

to two instances of GPT-2, both original and finetuned, and find competitive 75

quantitative results. 76

All code, data, pre-trained models, preprocessing pipelines, and experimental 77

parameters are available online1. We additionally supply a set of over 13,000 78

automatically generated abstracts for a wide range of test set titles. Using the 79

generalizable precondition approach presented here, we hope to enable future 80

applications, such as descriptive hypothesis generation. However, we are also cognisant 81

of the potential for abuse surrounding high quality domain-specific language models. 82

We discuss these concerns further in Future Challenges and Ethical Considerations. 83

Background 84

While recent language models receive a newfound popularity in proportion to their
surprising capacity across a range of tasks [5], their study predates modern machine
learning techniques [15]. Formally, a language model is a probabilistic model that
captures the conditional probability of each next element in a sequence given all prior
elements. Specifically, this is described by the function:

Pr(s) =

n∏
i=1

Pr(si|s1, . . . , si−1).

Here, s is a sequence of n elements. The probability of observing sequence s is 85

determined by the product of the conditional probabilities of observing each token si 86

given all prior tokens. These models can generate new text by iteratively sampling new 87

elements from the probability distribution Pr(si+1|s1, . . . , si). 88

The conditional language model introduces a new term c into the above equation.
The condition can allow applications to alter the resulting sequence based on a priori
knowledge [10]. Formally, the conditional language model is defined as:

Pr(s|c) =

n∏
i=1

Pr(si|s1, . . . , si−1, c).

89

Modern neural network language models [5, 8] handle these probability distributions
by minimizing the negative log-likelihood of these distributions over a large training set
of sequences. The loss associated with a dataset of m sequences is defined as:

L
((
s(1), c(1)

)
, . . . ,

(
s(m), c(m)

))
= −

m∑
j=1

n∑
i=1

logPrθ
(
s
(j)
i |s

(j)
1 , . . . , s

(j)
i−1, c

(j)
)
,

where s
(j)
i denotes the ith element of sequence s(j). Here, Prθ indicates the 90

parameterized model that approximates the language model distribution. Modern 91

systems often use the transformer architecture [5, 8, 16] for state-of-the-art quality 92

estimating Prθ. 93

The transformer [2], a sequence-to-sequence model built through multi-headed
attention layers, has been customized for a number of NLP tasks, as best demonstrated
by BERT [3], GPT-2 [5], and a range of notable follow-ups [17–19]. Conceptually, the
attention mechanism works by learning multiple weighted averages per-element of the

1https://sybrandt.com/2020/cbag
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input sequence. Specifically, this includes three projections of each element’s embedding,
represented as matrices: Q, K, and V . The rows of each matrix correspond to different
projections of the input sequence embeddings. The Q matrix acts as a “query” that is
compared against “keys” K and “values” V . The specific mechanism is defined as
follows, with d representing the dimensionality of each Q and K embedding:

A(Q,K, V ) = softmax

(
QKᵀ

√
d

)
V.

The “multi-headed” aspect of the transformer indicates that the attention
mechanism is applied multiple times per-layer, per-element of the sequence. These
multiple heads, hi, are then recombined through a feed-forward layer. If X and Y are

comprised of row-wise embeddings, and the values Θ(1),Θ
(2)
i ,Θ

(3)
i ,Θ

(4)
i correspond to

four different trainable weight matrices, and all but Θ(1) are associated with the ith

attention head, then multi-headed attention is defined as:

MH(X,Y ) = [h1; . . . ;hk]Θ(1),

where hi = A
(
XΘ

(2)
i , YΘ

(3)
i , YΘ

(4)
i

)
.

The transformer model presented by Vaswani et al. [2] uses the attention mechanism 94

in three different ways. Within the encoder stack, which processes the input sequence in 95

their proposed sequence-to-sequence model, the K, Q, and V embeddings all come from 96

the same sequence of tokens. This is referred to as “self attention.” In the decoder 97

stack, the part of the model that uses the encoder output to generate a new sequence, 98

these embedding matrices are masked during the attention function such that the 99

output embedding for position i can only depend on prior elements. This is called 100

“masked self attention”. Following this operation, each decoder embedding is attended 101

with all of the encoder embeddings. Specifically, Q values are derived from the decoder, 102

while K and V values depend on the encoder. We refer to this operation as 103

“Encoder-Decoder Attention.” Note that BERT [16] uses only the encoder self-attention 104

layers, while GPT-2 [5] uses the decoder’s masked self-attention layers. The work 105

presented here uses all three. 106

The multi-head components are combined with a feed-forward operation, denoted
FF, that projects the concatenated embedding into a larger dimensionality, applies the
Rectified Linear Unit (ReLU) activation function, and then reduces back to the set
embedding rank. Here, Θ(5) and Θ(6) are two new matrices of trainable weights.

FF(X) = max(0, XΘ(5))Θ(6).

107

Then, combined with a learned layer-wise normalization, these components combine
to form encoder and decoder blocks. Omitting the standard dropout between each
operation, the encoder block is defined as:

E(X) = LayerNorm(FF(α) + α)

α = LayerNorm(MH(X,X) +X),

while the decoder block is defined as:

D(X,Y ) = LayerNorm(FF(α) + α)

α = LayerNorm(MH(β, Y ) + β)

β = LayerNorm(MH(X,X) +X).
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Fig 1. Abstract Generator Model. Adapted from [2].

Multi-Conditional Language Model 108

The CBAG model follows the transformer architecture [2] with a shallow “condition”
encoder, and a deep “language model” decoder. Our adaptation of the transformer
model is depicted in Figure 1. The condition is specified as a set of embeddings that
enable a high degree of control. To capture information that is particular to language
within biomedical domain, we add terms in our objective representing not only elements
of the textual sequence, but also the part-of-speech, dependency tags, and entity class
labels associated with each textual element. For each class of prediction, we minimize
the sum of negative log-likelihood:

L(t, p, d, e, c) = LT (t, t, c) + LP (p, t, c) + LD(d, t, c) + LE(e, t, c),

where t = t1, . . . , tn are the set of ground-truth textual elements, each with associated
pi ∈ p part-of-speech tags, di ∈ d dependency labels, ei ∈ e entity labels. The term
c = c1, . . . , cm indicates the set of conditions associated with t, and captures
information such as metadata keywords and the publication year of the ground truth
elements. Each term of L follows the form of:

L[·](`, t, c) =

n∑
i=1

−p(i)`i + log

∑
j 6=i

exp
(
p
(i)
j

)
where p(i) = softmax

(
H ({t1, . . . , ti−1}, c) Θ[·]

)
and the symbol [·] is replaced by T , P , D, or E for each classification objective. The
sequence ` indicates the ground-truth labels associated with each element of t with
respect to the particular classification task. Additionally, H(t, c) is the proposed
transformer model, which accepts all text elements {t1, . . . , ti−1} and c in order to
produce an encoding for ti. This model is defined as:

H(t, c) = Dk

Di+1 = D(Di, El) and D0 = t+ PE

Ei+1 = E(Ei) and E0 = c.

Each input element of t and c is first assigned an input encoding and put through
their respective stacks of encoder and decoder layers. Additionally, k and l refer to the
number of decoder and encoder layers respectively. The symbol PE references the
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(a) Typed entity recognition.
(b) Dependency tags and parts of speech.

Fig 2. Annotations provided by ScispaCy “BIONLP13CG.”

positional encoding defined by the sinusoidal function presented in [2]. This encoding
enables the transformer model to take position into account when considering
embeddings, and is defined as:

PEpos,2i = sin(pos/10000
2i
d )

PEpos,2i+1 = cos(pos/10000
2i
d ),

where pos indicates the embedding’s position in the input sequence, and i denotes the 109

dimension along each size-d embedding. 110

Initial input encodings are provided by an embedding table that begins randomly 111

initialized. We determine textual elements through the unigram word-part 112

tokenizer [12], and contextual elements consist of a learned embedding per-publication 113

year, as well as embeddings for each Medical Subject Heading (MeSH term). 114

Hyperparameters. We selected hyperparameters similar to the GPT-2 “medium” 115

model. This includes an embedding dimensionality of dk = 1024, k = 16 attention heads 116

per multi-headed attention layer, e = 2 encoder blocks, d = 16 decoder blocks, a 117

fully-connected size of 3072, and an inner-block dropout rate of 0.1. We additionally use 118

a max sequence length of n = 128. Our set of initial embeddings contains 16,000 text 119

tokens, 48,133 MeSH headings, and 230 year embeddings. 120

Optimization. We minimize L using the large-batch optimizer LAMB [20] across 40 121

Nvidia V100 GPUs using an effective batch size of 480. We selected a learning rate of 122

0.001, with a 500-batch linear warm up. We check pointed the model each epoch after 123

viewing 5% of the training data (about 700,000 abstracts). Note that each time an 124

abstract is viewed, we select from it a different training window. We trained this model 125

for 72 hours using PyTorch Lightning [21] to aid in the distribution and check pointing. 126

Data Preparation 127

In order to train the model described in Multi-Conditional Language Model, we collect 128

training samples (t, c) from the set of publicly available biomedical abstracts provided in 129

the MEDLINE database2. This dataset contains publication dates, author-supplied 130

MeSH terms, titles, and abstracts for more than 30-million citations. We filter for 131

documents that were originally published in English, as well as documents that contain 132

at least one non-title sentence. Documents without metadata keywords are allowed. We 133

split the remaining abstracts into a training and test sets following a 70-30 split. 134

Within the domain of biomedical text mining, there are relatively few annotated 135

training sources [11,22]. To endow the CBAG model with biomedical-domain 136

knowledge, we automatically annotate the entire MEDLINE training set using the 137

ScispaCy model [23] trained on the “BIONLP13CG” BioCreative dataset [11]. We 138

selected this particular model because it produces the widest range of entity labels when 139

performing named entity recognition. These consist of: cancer, organ, tissue, organism, 140

2https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Fig 3. Abstract Generator Example Input.

cell, amino acid, gene or gene product, simple chemical, anatomical system, immaterial 141

anatomical entity, multi-tissue structure, developing anatomical structure, organism 142

subdivision, and cellular component. We add a class corresponding to “not an entity” 143

as well. 144

Using the ScispaCy model and a cluster of 100 machines, we quickly identify every 145

token, part-of-speech, dependency tag, and entity label for all 14-million training-set 146

MEDLINE documents. We depict examples of these automatic annotations in Figure 2. 147

However, in order to formulate these textual features for input into the CBAG model, 148

we also leverage the unigram subword regularization method from Kudo et al. [12]. This 149

method learns an efficient tokenization sentences. Each token corresponds to a “chunk” 150

of characters, many of which correspond to subword components. The unigram 151

approach adds a normalization factor wherein the specific tokenization for each word is 152

probabilistic determined from the set of ambiguous subword sequences. These subword 153

sequences, along with special “start of abstract” and “end of abstract” tokens, create 154

input t. 155

We train the unigram tokenization method on one-million randomly sampled 156

sentences from the training set, specifying a fixed-size vocabulary of 16,000 subword 157

tokens. We additionally lowercase the entire training corpus, and enforce that every 158

character within the sampled training set receive its own token. Using the resulting 159

model, we tokenize the entire training set, and cross reference the subwords with the 160

multi-task labels provided by ScispaCy. This way, each subword token ti in the training 161

set is associated with a part-of-speech pi, dependency tag di, and entity label ei. 162

Next we index each training-set publication years and author-supplied MeSH 163

keywords, which form the condition c. For publication years, we simply identify the 164

earliest year within the training set, 1790, and add an index for each year between then 165

and 2020. We identify over 4-million author-supplied keywords within MEDLINE, 166

which is prohibitively large for our model to capture. We prune any keyword that 167

occurs fewer than ten times, reducing that set to a manageable 48,133. We add each to 168

our excising embedding index, which contains nearly 50,000 total embeddings. 169

When training, we select a batch of abstracts, and for each abstract we select a 170

window of 128 subword tokens to form t, restricted such that the first token of each 171

window corresponds to the first token of a sentence. In addition, we supply the 172

condition indices c. The sequence of labels ` is formulated by shifting the subword token 173

window by one token, such that ti−1 is used to predict ti, pi, di, and ei. 174

An example of model input and output is depicted in Figure 3. 175
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Results 176

While NLP benchmarks such as GLUE [24] and its biomedical counterpart BLUE [22] 177

help researchers compare performance across a range tasks, we are unaware of a 178

benchmark for the generation of biomedical abstracts. In lieu of such a dataset, we 179

leverage our held-out test set of Medline abstracts, and a set of traditional NLG 180

metrics [14]. We generate abstracts by providing a title t and condition c from a test set 181

abstract. We extend t by sampling from the resulting probability distribution over 182

subword tokens p(i) until observing the “end of abstract” special token, or until the 183

generated text has reached a pre-determined maximum token length. We then compute, 184

Bleu [25], METEOR [26], ROUGE-L [27], and CIDEr [28], by comparing each generated 185

sentence against the set of “reference” sentences comprising the corresponding 186

human-written abstract. 187

To add context to our reported performance numbers, we also generate text using 188

OpenAI’s recently released 1.5-billion parameter “huge” GPT-2 model [5]. This model 189

has been shown to excel on a number of tasks without modification, inducing as a 190

replacement to traditional knowledge bases [13]. However, as this model was trained to 191

generate language found online, such as in the BooksCorpus and English Wikipedia, it 192

is at a disadvantage when generating domain-specific text. Because GPT-2 does not 193

produce any “end of document” indicator, we generate the same number of subword 194

tokens as present in the human-written counterpart, and truncate the potential partial 195

sentence at the end of the abstract. 196

We present a full abstract from both CBAG and GPT-2 in Tables 1 and 2. Note, 197

newline characters produced by GPT-2 are replaced with “[\n]” due to space limitations. 198

In this example, we observe that the CBAG model recovers a set of relevant biomedical 199

entities. Unsurprisingly, the model parrots some entities that appear in the title, such 200

as, “micro- and nanopatterned topographical cues,” as well as “cellular functions” in 201

this example. However, it is also able to produce more advanced concepts including 202

“multiple imaging modalities,” and “multiscale substrates” that do not appear in the 203

title but do appear in the corresponding human-written abstract (not reproduced here 204

for space concerns, but is publicly available). The GPT-2 model does recover some 205

biomedical entities, such as “damaged retinal pathway” and “retinal pigment 206

epithelium,” however these keywords are unrelated to the considered document. Other 207

out-of-context entities such as “artificial neural network,” “computer screen,” and 208

reference to a blog reduce the ability of a human reader to extract any meaningful 209

biomedical information from this text. We find that these example abstracts help 210

motivate the need for domain-specific language models. 211

Because CBAG is a conditional language model, we explore the range of responses 212

the model can produce given different conditions. In Table 3 we present the first 213

sentence produced by the model for the input “In this study, we found...” given 214

different conditions. The results indicate that the condition has a significant impact in 215

the resulting text. When conditioned with the MeSH term for contraceptive agents, the 216

model discusses a patient study on cardiac side-effects. The output conditioned on the 217

pesticide DDT describes fruit and toxicity. The output on gold describes 218

gold-nanoparticle sensitivity. These results demonstrate the ability for the CBAG model 219

to learn domain-specific research content provided by various keyword preconditions. 220

To provide further qualitative comparison between the considered models, we 221

additionally provide a few first-sentences produced given various test set titles in 222

Table 4. In these sentences, and across the test set, we observe that CBAG produces a 223

number of scientific clichés. Most clearly, the model captures biomedical turns of phrase 224

such as “in clinical practice.” Additionally we observe that it is common for CBAG to 225

produce an entity followed by an abbreviation that it will repeat throughout the text. 226

However, we observe that some abbreviations are not sensible from a human 227
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(PMID: 28026780) Hierarchically Micro- and Nanopatterned Topo-
graphical Cues for Modulation of Cellular Structure and Function.

Original Author’s Abstract
Living cells receive biochemical and physical information from the surrounding
microenvironment and respond to this information. Multiscale hierarchical
substrates with micro- and nanogrooves have been shown to mimic the native
extracellular matrix (ECM) better than conventional nanopatterned substrates;
therefore, substrates with hierarchical topographical cues are considered suitable
for investigating the role of physical factors in tissue functions. In this study,
precisely controllable, multiscale hierarchical substrates that could mimic the
micro- and nanotopography of complex ECMs were fabricated and used to
culture various cell types, including fibroblasts, endothelial cells, osteoblasts,
and human mesenchymal stem cells. These substrates had both microscale
wrinkles and nanoscale patterns and enhanced the alignment and elongation of
all the cells tested. In particular, the nanotopography on the microscale wrinkles
promoted not only the adhesion, but also the functions of the cells. These
findings suggest that the hierarchical multiscale substrates effectively regulated
cellular structure and functions and that they can be used as a platform for
tissue engineering and regenerative medicine.

CBAG
the ability to integrate multiple physiological cues and thereby mediate many
cellular functions is critical for many complex life history processes. despite
recent advances in high-throughput imaging of biomolecules and their spatiotem-
poral integration into dynamic structure and function, the precise structural
organization and temporal structure of tissue architecture remains poorly under-
stood. here, we present an efficient system for temporally and spatially mapping
micro- and nanopatterned topographical cues in organ-specific spatial and tem-
poral properties using multiple imaging modalities. the micro-/nanopatterned
geometrical cues can be localized to cell membranes, cells, and proteins. the
spatial and temporal dynamics of these local signals are precisely represented
by the cross-correlation function, which forms the basis of a geometrical model
that accurately provides spatiotemporal information about the spatial location
and spatial coordinate of the labels and their functionalities. the model is also
capable of correlating the properties of neural cells within their network without
affecting the spatial and temporal organization of their spatial features, as well
as those of their surrounding tissue. as an example of this model, cell types
grown as multilayers are described.

Table 1. (Part I) Full abstracts generated with respect to the same title.
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(PMID: 28026780) Hierarchically Micro- and Nanopatterned Topo-
graphical Cues for Modulation of Cellular Structure and Function.

GPT-2 Huge Unmodified
[\n][\n] The first example of what happens when an artificial neural network’see’
complex features on a computer screen is provided by the vision of people with
sight loss. The most recent results (e.g., see Krueger’s blog) suggest that a
person who has a damaged retinal pathway for visual light-scattering called LID
is able to’see’ objects using low power laser sources. The finding is unexpected
because it suggests an adaptive mechanism for recovering limited visual function.
The finding has profound implications for understanding how the retina and
brain develop, how vision is learned, and how people can potentially regain
impaired vision with new retinal implants. [\n] The retinotopic map shows
which parts of the retina belong to what parts of the visual field (more details in
the video below). [\n] The following images are from a retinotopic map showing
a person who has lost some peripheral vision due to an injury in his optic nerve
and retinal pigment epithelium. Note that he can make out details when looking
toward the left, and when looking toward the right, details become distorted or
are obscured.

GPT-2 Small Finetuned
The development of new materials for biomedical applications is a major chal-
lenge. Here, we report a novel approach to the fabrication of hierarchical micro-
and nanostructures for the modulation of cellular structure and function. The
hierarchical micro- and nanostructures are fabricated by a simple one-pot pro-
cess using a simple one-pot method. The hierarchical micro- and nanostructures
are fabricated by a simple one-pot method using a simple one-pot method.
The hierarchical micro- and nanostructures are fabricated by a hybridize the
nanostructures are fabricated by a hybridize the nanostructures are fabricated
by a two-based on the nanostructures. The nanostructures are fabricated by
a nanostructures. The nanostructures are fabricated by a nanostructures are
fabricated by a nanostructures are fabricated by a nanostructures are fabricated
by a nanostructures. The nanostructures are fabricated by a nanostructures
are fabricated by a nanostructures are fabricated by a nanostructures.

Table 2. (Part II) Full abstracts generated with respect to the same title.
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Condition CBAG’s Response

D003270: Contra-
ceptive Agents

...that, during a prospective observational period,
the patients were aware of the possibility of adverse
cardiac events.

D003634: DDT ...that the aromatic (g)-tse, which is often produced
in fruit, is potentially useful to suppress green algae
as well as pesticide toxicity.

D004042: Unsatu-
rated Dietary Fats

...that vitamin e levels are associated with early child-
hood health consequences.

D006046: Gold ...that the nanoparticles provide improved sensitivity
to gold nanoparticles, and they are sensitive to ag-b
interaction rather than ca-a interaction.

D005395: Fish Oils ...that the combination of pinkland and fish oil intakes
(ca-like and ca-like) improves the antioxidant effect
of yinneria (tricapsa vul) and that can significantly
decrease food intake.

Table 3. Differing generations of the same prompt given various MeSH preconditions.
We record the first sentence completing the prompt “In this study, we found...”

perspective, such as “in-field navigation (oif).” In these cases, the incorrect abbreviation 228

will still be repeated by the model. 229

Not seen in these first-sentences is a trend for the model to follow major abstract 230

claims with a fictional p-value or sample-size. We find p-values in approximately 10% of 231

abstracts, with a median value of 0.02, and when plotting this distribution of generated 232

p-values we find it matches the expected (and troubling) trend of p-values in real-world 233

science [29]. Additional examples of these trends can be found in our supplemental data 234

online https://sybrandt.com/2020/cbag3. 235

Quantitative Analysis 236

In order to understand quantitative relationships between each model, we turn to a set 237

of NLG metrics, which are nicely summarized by [14]. At a high level, each metric 238

rewards models that generate text that is similar to that produced by human authors 239

for the same prompt. Each metric would then assign a numeric value to our model’s 240

generated text based on whether it shared similar characteristics with any of the 241

human-provided responses. In our case, we adapt these metrics for scientific text. We 242

consider an article’s title to be the “prompt” and we consider the body of the abstract 243

to be a single “response” that our algorithm will be judged against. 244

The different metrics we consider each value different textual characteristics. The 245

simplest is the Bleu metric [25], which rewards models that generate n-grams that are 246

present in the reference text. An n-gram is simply a series of n words in a specific order. 247

The word ”Hello” would be a 1-gram, while ”my name is” would be a 3-gram. Typically 248

it is infeasible to consider all n-grams of a given text, so instead Bleu is typically 249

restricted to a range of n values. Specifically, if we wanted to compute Bleuk (the Bleu 250

value considering only k-grams) for a generated hypothesis text H with respect to a 251

single reference text R, we would compute: 252

Bleuk = |Gk|−1
∑
Gk

min (Count(Gk, H),Count(Gk, R))

3Link to anonymized repo. Update pending acceptance.
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(PMID: 28029317) Laparoscopy to Predict the Result of Primary
Cytoreductive Surgery in Patients With Advanced Ovarian Cancer:
A Randomized Controlled Trial.
laparoscopic surgery is the standard
treatment for patients with advanced
ovarian cancer; however, these patients
do not receive a standard palliative reg-
imen.

J Natl Cancer Inst 2008;100:1567–1572.
24. The focus of this review is the effect
of apoE4 levels on the risk of poor surgi-
cal outcome in patients with advanced
ovarian cancer.

(PMID: 27993387) Low vitamin D does not predict statin associated
muscle symptoms but is associated with transient increases in muscle
damage and pain.
in clinical practice, patients with
moderate-to-severe hypervitaminosis d
present with debilitating side effects re-
lated to statin use.

ow vitamin d does not predict statin
associated muscle symptoms but is asso-
ciated with transient increases in muscle
damage and pain.

(PMID: 28012718) Skin-Resident Effector Memory CD8+CD284−
T Cells Exhibit a Profibrotic Phenotype in Patients with Systemic
Sclerosis.
systemic sclerosis (ssc) is an inflamma-
tory disease characterized by the infiltra-
tion of t cells into skin and skin surfaces.
the presence of autoantibodies can lead
to the development of cutaneous t-cell
hyperactivity.

J. Clin. Invest. 117 : 2748-2759; Dilat-
ing collagen in chronic neuropathic pain.
Arch. Neurol. 63 : 983-989

(PMID: 27999935) Laparoscopic sentinel node navigation surgery for
early gastric cancer: a prospective multicenter trial.
to compare the feasibility and safety of
laparoscopic sentinel node navigation
surgery with that of conventional in-field
navigation (oif) surgery in the treatment
of early gastric cancer (egc).

Patel S et al. (2003) Age associated fac-
tors associated with false-positive result
of prognostic biomarkers in prostate and
breast cancer.

Table 4. CBAG (left) compared to GPT-2 Huge Unmodified with 1.5B parameters
(right). Both systems are given the same title as a prompt. CBAG receives metadata.
Results truncated for space.
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Fig 4. Cumulative score distributions comparing GPT-2 Huge Unmodified, GPT-2
Small Finetuned, and CBAG. Higher values for all considered metrics are better. If a
model achieves higher metric scores across a wider set of examples, the resulting
cumulative score distribution will have a lower area under the curve.

where Gk is the set of all k-grams in H, and Count(Gk, X) produces the number of 253

occurrences of Gk in text X. 254

In this work we consider Bleu1, as well as Bleu1+2+3+4, which sums the Bleu-scores 255

for 1-4 grams. We also consider similar metrics such as METEOR [26], CIDEr [28], and 256

ROUGE-L [27]. METEOR is similar to Bleu, but first applies stemming, synonym 257

matching, and imposes a constraint regarding the ordering of n-grams. CIDEr weights 258

Bleu-scores by the Term-Frequency Inverse-Document-Frequency (TF-IDF) of n-grams 259

in the reference. ROUGE-L is a slightly different metric in that it considers only the 260

longest common subsequence shared between the hypothesis and reference. Specifically, 261

if S is the longest common subsequence shared between H and R, then ROUGE-L is 262

defined as: 263

p =
Length(S)

Length(H)

r =
Length(S)

Length(R)

ROUGE-L =
(1 + β2)pr

r + β2p

where β is a constant that balances the tradeoff between p and r (typically, β = 1.2). 264

In addition, we compute a customized “CIDER-Title” metric that sets the weight of 265

any n-gram that appeared in the title to zero. This quantified the ability of each model 266

to produce non-trivial n-grams in the abstract body. The cumulative sentence-wise score 267

distribution for all metrics for a sample of test set abstracts are depicted in Figure 4. 268

We find that both the CBAG and the GPT-2 Small Finetuned models perform 269

almost identically in n-gram recall. The GPT-2 Huge Unmodified model, while capable 270

of producing some sentences that score highly on these recall-oriented metrics, does so 271

less frequently. Note that the above plots, being sentence-wise metrics, are unable to 272

penalize a model for producing repeated sentences. For instance, one GPT-2 Small 273
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Finetuned generation produces the correct rare phrase “phosphatidylinositol” 274

repeatedly, resulting in a high METEOR and Bleu-1 score. As a result, we find the 275

above quantitative measures demonstrate similar keyword recall capabilities of both 276

CBAG and GPT-2 Small Finetuned, even if they can produce qualitatively different 277

results. This finding emphasizes the need for new metrics when comparing text 278

generation results with only single reference examples. 279

Related Work 280

BERT [3] is a transformer-based model that consists a stack of unmasked multi-headed 281

self-attention, which means that every output embedding depends on all input 282

embeddings. This all-to-all dependency is what the authors mean when describing the 283

model as “bidirectional,” which departs from the more traditional left-to-right, 284

right-to-left LSTM model. 285

When training BERT, input text is tokenized by the WordPiece algorithm [30], and 286

two different types of training examples are input. In the first, some tokens are 287

randomly replaced with a masked reserve token. The objective of the model during the 288

unsupervised pre-training phase is to predict the original token, using the rest of the 289

input. In the second, two sentences are supplied and, using the output embedding of the 290

“start-of-input” character, the model must determine whether the second sentence 291

followed the first in the training data. 292

GPT [4] and GPT-2 [5] both use a transformer-decoder stack of masked multi-headed 293

self-attention. The mask, in this case, enforces that the output embedding of token i 294

may only depend on inputs 1, . . . , i). This masking formulation, which we adopt in this 295

work, restricts the GPT-models to function as pure language models. These models are 296

pre-trained through a generative objective. For each input sequence 1, · · · , n, the model 297

is input 1, · · · , (n− 1) and required to generate the sequence 2, · · · , n. Due to the 298

masked-self-attention layers, this means that each prefix sequence of the input is 299

simultaneously predicted each follow-up word. 300

The major difference between the GPT and GPT-2 models is the larger training 301

corpus, which leads to state-of-the-art text generation. In [5], this model is even shown 302

to improve the state-of-the-art of other objectives such as question answering and 303

translation, even without a finetuning phase. Follow-up work [13] identifies that 304

high-performance language models like GPT-2 can even replace specialty 305

knowledge-bases. 306

XLNet [31] modifies some of the assumptions underpinning the BERT model in order 307

to improve the pre-training of its Transformer-XL [32] inspired architecture. While the 308

BERT model pre-trains be predicting masked tokens from input sequences, XLNet 309

learns the probability distribution of tokens based on the set of permutations in the 310

factorization order of pre-training sequences. As a result, XLNet can learn to use both 311

forward and backward context without introducing a mask token that is only used in 312

pre-training. As a result this technique outperforms BERT across a range of natural 313

language understanding tasks. However, the authors comment that the benefits of this 314

technique come from the ability to better leverage forward and backward context, which 315

makes this technique hard to apply to text generation, where backward context is not 316

available. 317

Performers [33] are models that may provide a more efficient alternative to the 318

self-attention mechanism of the transformer architecture without compromising on 319

modeling quality. Using the Fast Attention Via positive Orthogonal Random features 320

(FAVOR+) approach, that provides a provably accurate estimate of the transformer 321

self-attention mechanism, using linear time and space. A modification of this approach, 322

also in the initial Performer paper, uses a prefix-sum operation to estimate 323
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forward-directional attention in a manner that would be compatible with language 324

modeling. As a result, it is likely that language generation models will be able to use 325

this technique to reduce the computational costs associated with today’s state-of-the-art 326

models. While this is an important step to making language model’s more applicable to 327

everyday tasks, the downstream performance of both neural architectures is very 328

comparable. 329

SciBert [6] achieves state-of-the-art performance across a range of scientific NLP 330

benchmarks by retraining the WordPeice tokenizer [30], and a BERT model [3] on 331

1.14-million papers collected by semantic scholar. In [6], Beltagy et al. demonstrate that 332

by performing unsupervised pre-training on this scientific dataset, they are able to 333

improve performance over the standard BERT-pre-trained weights on their ultimate 334

finetuned models for entity recognition, PICO extraction, text classification, relation 335

classification, and dependency parsing. These findings make the case that scientific text 336

is sufficiently dissimilar from that found in general language to require custom models. 337

BioBert [7] follows the same pattern as SciBert, but pre-trains on the biomedical texts 338

supplied by MEDLINE and PubMedCentral. As opposed to SciBert, this method does 339

not replace the general-language training data supplied by English Wikipedia and 340

BooksCorpus, and instead appends both biomedical text databases. In [7] Lee et al. 341

explore the resulting finetuned performance across a large range of small biomedical 342

NLP tasks, and find mixed results. We interpret these results to indicate the 343

importance of finding training data that is not only sufficiently large, but also relevant 344

to the task at hand. 345

Covid-twitter-BERT (CT-BERT) [34] is a pretrained BERT model that was trained 346

to model tweets pertaining to the COVID-19 pandemic. This model demonstrates the 347

ability for NLP models of all varieties to specialize for different applications, and that 348

one can expect a significant improvement in task-specific tasks if one first derives a 349

task-specific model. In this work, CT-BERT outperforms the BERT-Large model by an 350

average of 17.57% across five NLP tasks. In this work we see a similar behavior wherein 351

a biomedically specialized model can provide significant advantages over a more general 352

NLP solution. As discussed for other BERT-based models, the limitations of BERT for 353

NLG remain a reason to consider specialized NLG-specific architectures when 354

generating scientific text. 355

Wang et al. [16] explore the capacity for a BERT model to effectively function as a 356

Markov random field language model. This technique takes advantage of the masked 357

pre-training used in the base BERT model to predict unknown tokens. This approach 358

also departs from the traditional language model described here as every sequence 359

element determines the probability of every other element. Generation is performed by 360

iterative freezing highest-probability elements from within a fixed-length sequence of 361

initially free variables. 362

CTRL [8] is a conditional language generation method that extends GPT by including 363

“control codes” that prefix the sequence of text elements. For instance, each website 364

represented in the training data is represented by a code, and as a result generated text 365

can switch styles based on these prefixes. Additionally, various model functions, such as 366

question answering, are learned via generation with various codes. As a result, prefixing 367

questions with the respective code results in a higher probability assigned to relevant 368

answers. Furthermore, this work includes some multi-code prefixes, such as “Rating 5.0” 369

or “Sentence Title” to further condition the generated result. While the CTRL model is 370

the most similar to the method presented here, it has some key differences. Firstly, the 371

CTRL model uses prefix tokens to condition generated text, while we apply a shallow 372

transformer-encoder stack. As a result, the CTRL approach is limited in that training 373

requires a strict set of codes, or a small set of enumerable code-pairs. In contrast, the 374

CBAG approach allows the method proposed here to accept arbitrary-length sequences 375
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of keywords as a condition. 376

Future Challenges and Ethical Considerations 377

Many readers have likely heard of paper generators similar to Scigen [35]. This 378

particular project generates computer science full-text articles by randomly sampling 379

from a context-free grammar, and has produced publications actually accepted by some 380

venues. This 15-year-old system, however, is incapable of fooling but the least-observant 381

of gate keepers. However, high quality text generation introduces NLP to a range of 382

challenges currently posed by “deepfake” images. These problematic pictures permeate 383

the zeitgeist and stir a response reaching further than computer science [36], extending 384

into law [37], culture [38], and philosophy [39]. Meanwhile, misinformation spread by 385

human actors online already cascades throughout social network echo chambers at an 386

alarming rate [40]. One needs very little imagination to conceive of ways that the 387

automatic generation of “pseudo-science” online could lead to public distrust of the 388

scientific community. 389

OpenAI is forming partnerships between computer-science and the social sciences in 390

order to understand these implications in society [41]. One major challenge they note is 391

a distinct lack of “correctness” measures for text generation. In completing this work, 392

we find that some correctness measures do exist, such as the SPICE metric to judge 393

image caption correctness [42]. Unfortunately, this technique does not scale well to large 394

knowledge bases as it requires the graph of predicate arguments induced by reference 395

sentences. Not only are there a lack of methods to extract arguments from text, but we 396

need to find new algorithms for quantifying correctness for large graphs induced by all 397

of biomedical science. 398

Despite the potential for abuse, we designed CBAG with our own vision toward 399

enabling human-understandable hypothesis generation systems [43,44]. For instance, 400

our model architecture could be conditioned on more generalized forms of existing 401

biomedical knowledge, such as semantic graph embeddings, in order to produce textual 402

descriptions of plausible future research directions. These explanations could potentially 403

persuade domain scientists to pursue new research directions, as similar systems have 404

already done [45,46]. However, these systems require specialized analysis and introduce 405

new cognitive burdens for scientists to understand and act on their outputs. If similar 406

hypothesis generation systems instead could produce human-readable arguments, then 407

we could better utilize the wealth of publicly available information, improve the 408

productivity of biomedical researchers, and ultimately find new treatments and cures for 409

people worldwide. 410

Conclusions 411

We present the Conditioned Biomedical Abstract Generation (CBAG) model for 412

understanding scientific abstracts. We train this model using publicly available 413

biomedical data provide through MEDLINE to predict text that is conditioned on 414

publication year and arbitrary sets of author-supplied keywords. This model leverages 415

the transformer architecture [2], featuring a shallow condition encoder, as well as a deep 416

language model decoder. Across a range of NLG metrics [14], we demonstrate 417

competitive performance with a finetuned version of GPT-2, having only trained on 418

biomedical abstracts. Qualitatively, we present generated sentences and documents that 419

exemplify the sort of quality and control that the CBAG model enables. 420

We anticipate that conditioned language generation can be used to build new 421

applications in the biomedical domain, such as a hypothesis generation system that 422

July 17, 2021 16/20



produces textual descriptions of proposed new research directions. To do so, the 423

conditional aspect of the CBAG model will likely be a necessity. However, we also 424

acknowledge the ethical considerations behind the proliferation of convincing scientific 425

language generation models. We provide the pre-trained model, more than 13,000 426

generated abstracts, and all necessary training and evaluation code to aid in exploration 427

and reproducibility. 428
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