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Accomplishments: First Author Papers

e DPublished:
o0 Moliere: Automatic Biomedical Hypothesis Generation System (KDD'17)
o Large-scale validation of hypothesis generation systems via candidate ranking (BigData'18)
O Are abstracts enough for hypothesis generation? (BigData'18)
® In-Submission
o First-and High-Order Bipartite Embeddings
o Hypergraph Partitioning with Embeddings
o  AGATHA: Automatic Graph-mining And Transformer based Hypothesis generation
Approach.
o CBAG: Conditional Biomedical Abstract Generation



Accomplishments: Co-Authored Papers

e Published:
o Inhibition of the DDX3 prevents HIV-1 Tat and cocaine-induced neurotoxicity by targeting
microglia activation. (JNP Dec. 2019)
o Using Drive-by Health Monitoring to Detect Bridge Damage Considering Environmental and
Operational Effects. (JSV Mar. 2020)
® In-Submission
o Unsupervised Hierarchical Graph Representation Learning by Mutual Information
Maximization
® Tech Reports & Submission Pending
o To Agile, or not to Agile: A Comparison of Software Development Methodologies
o Using BERT to Quantify Survey Responses
o  Learning GPU Memory Access Patterns



Accomplishments: Industry

® Los Alamos National Lab (Intern, Summer 2017)

® Google Pittsburgh (Intern, Summer 2018)
0 Presented at Google PhD Intern Research Conference (Only 30 presentations accepted)

® Facebook NYC (Intern, Summer 2019)

o Intern Executive Dinner (Only 13 interns selected)

Accepted a position with Google Brain.
Starting in August at Pittsburgh office.




Exploiting Latent Features of
Text and Graphs



® Goal: Predict new research

® Data sources:

Motivation: o Scientific Papers

o Ontologies

o0 Interaction Networks

Automatic Hypothesis Generation

® Need to find underlying trends




Contribution Summary

e Graph Embedding

o FOBE & HOBE bipartite embedding

o0  Embedding-based coarsening for hypergraph partitioning
e Automatic Hypothesis Generation
Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

o O O O O

Conditional biomedical abstract generation

[ Each corresponds to first-authored publications




Contribution Summary

e Graph Embedding

©)

©)

FOBE & HOBE bipartite embedding
Embedding-based coarsening for hypergraph partitioning

® Automatic Hypothesis Generation

o O O O O

Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation
Conditional biomedical abstract generation

[ New Since Proposal




Background:

Embeddings

® Specialized statistical models:

(@)

(@)

(@)

Limited usability
Limited scope
Not data driven

e Embeddings:

O O O O O

Large scale
Wide scope
Data driven

Detects richer patterns

Applicable to ML



Word2Vec Text

Embeddings

Skip Gram Model

Observe similarity:

o  Similar words share similar
company
Model Similarity:
o  Given one word, determine what

others are likely to co-occur

Input

Emb.

—> Wi-l

» h

—HWila




@ Nucleic Acid ®Bacterium
@®Eukaryote @Cell
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® Automatic Hypothesis Generation

o O O O O

Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

Conditional biomedical abstract generation



Graph
Graph Embedding 33
® DeepWalk Model Q e

® Observe Similarity: Random Walk

\
o  Similar nodes co-occur in random ° - Qe -

walks
® Model Similarity: Output
©  Given a node, determine others S A

that are likely to co-occur

Input Emb. > E

D » h
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o FOBE & HOBE bipartite embedding

o0  Embedding-based coarsening for hypergraph partitioning
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First- and High-Order Bipartite Embeddings
Sybrandt, Safro




Bipartite Graphs

G=(V,E)
Vv=AUB
ANB=Y
e : embedding function
o &V—R"
I'(x) : Neighborhood of x
Typical embeddings fail to capture

(@)
@)

type—speciﬁc features




First-Order Bipartite
Embedding (FOBE)

e Fastlocal samples
® No measurement of distant

relationships




First-Order Bipartite Embedding (FOBE)

® (bservations:

Sa(ai,aj) =<

Se(Bi, Bj) = 4

SV(aiaﬁj) = 9

a,a; € A & T'(ay) NT(ay) #10
otherwise
Bi,B; € B & T'(8;)NT(B;) #0
otherwise
Oéiﬁj c b

otherwise



First-Order Bipartite Embedding (FOBE)

® (Observations:
o) SA) SB) SV

S, 03) = o ((01)Te(a)
SB(Bi, B5) = o (e(5:)Te(B;))

Sv(ai, B;) = akE@(ﬁj) {gA(@ia ak)} Bkellilw {gB(ﬁjaﬁk)}

1
1l +e 7

o(r) =



First-Order Bipartite Embedding (FOBE)

® Observations:
O SA) SB) SV
® [Lstimations:
© SA) SB) SV
® [Loss: ~
o Divergence SA (U’iv Uj) log

Z ‘|‘§B(’Ui,’l)j)10g (

V;,U; €V XV




Higher-Order Bipartite
Embedding (HOBE)

e Emphasizes more-distant
relationships
® Similarities approximated by

algebraic distance




Algebraic Distance

® Assign nodes coordinates on unit
interval

Iterative process

Fast to compute

Run R trials

Similarity measure:

d(vi,v;) = ER: (a(K) —ald) (Uj))Z

r=1

s(vi,v;) = VE — (v, v))
15 Uj \/ﬁ




High-Order Bipartite Embedding (HOBE)

® (bservations:

( .
BkEF(IcI)}S}FiF(aj) min (s(a, B), S(Ozj, Bk))

SA(ai7aj) . < if g, QU c A

\ 0 otherwise

( ]
1IMNax min (S\&g, O; ), S\OE, O;
akér(ﬁi)ﬁf(ﬁj) ( ( k 6) ( k 6]))

Sp(8i,B85) = it 8, 8, € B

\ 0 otherwise




High-Order Bipartite Embedding (HOBE)

® (bservations:

max S ;L O ),
ar€l'(B;5) alas, o)

S - (5;
. 5B, Br)

Sy (i, ;) = max



High-Order Bipartite Embedding (HOBE)

° Obsellrvatio/ns: /
°S4, g,y

® [Lstimations:

)
N—"
_|
M
/N
Q
Q.
N——"
N—"

§14(047;, o) = max (0, €(ay



High-Order Bipartite Embedding (HOBE)

° Obsellrvatio/ns: /
°S4, g,y
® [Estimations:
g e
°S4, 85,5y
® [.oss:

0  Mean Squared Error

> | +(Sp(vi,v) = Sp(vi,v5))?

Vi, V; EV XV / ~/




Combination
Embedding

Merge pretrained embeddings
Autoencoder combined with edge
prediction

Combines redundant signals

Boosts distinct signals

In(i)

50% Dropout

In(j)
50% Dropout

m m
7~ P
\ . \ ~e
| — | —

\ k Out( i)

L ou())




Link Prediction Results : MadGrades Network

Unified A-Personalized B-Personalized

ROC AUC

Training Data Ratio Training Data Ratio Training Data Ratio
FOBE HOBE D.Comb.
—  AR.Comb. = = Deepwalk LINE

= = Node2Vec = = BiNE = = Metapath2Vec++



Recommendation Results

Metric@10: F1 NDCG MAP MRR Metric@10: F1 NDCG MAP MRR
DeepWalk .0850 2414 1971 3153 DeepWalk .0027 0153  .0069 .1844
LINE .0899 1441 .0962 1713 LINE .0067 0435 .0229  .2477
Node2Vec .0854 2389 1944 3111 Node2Vec .0279 1261 .0645  .2047
MP2V++ .0865 2514 1906  .3197 MP2V++ .0024 0153  .0088  .2677
BINE 1137 2619 .2047  .3336 BINE 0227 1551 .0982  .3539
FOBE 1108 3771 2382 4491 FOBE 0729 .3085 .1997 3778
HOBE 1003 .4054 .3156 .6276 HOBE .0195 1352 .0789  .3400
D.Comb. 0753 2973 .2362  .5996 D.Comb. .0243 1285 .0795  .3520
A.R.Comb. | .0667 2359 .1730  .5080 A.R.Comb. | .0388 1927 1249 .3915

DBLP LastEM



Contribution Summary

e Graph Embedding

o FOBE & HOBE bipartite embedding

o Embedding-based coarsening for hypergraph partitioning
e Automatic Hypothesis Generation
Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

o O O O O

Conditional biomedical abstract generation

Partition Hypergraphs with Embeddings
Sybrandt, Shaydulin, Safro




Hypergraphs

Generalization of graphs
Hyperedges may contain any subset

of nodes

H=(V,E)




Hypergraphs are Bipartite Graphs




Hypergraph
Partitioning

Divide nodes into similarly-sized
parts
Minimize:

o Cut hyperedges

o Connectivity of cut hyperedges

NP Hard

o Tosolve

o Toapproximate




Multilevel Partitioning

® Best solution strategy

® Steps: @
o  Coarsening @
o Initial Solution @

o) Uncoarsening
[ Expansion

m Interpolation

m Refinement

Buiussieo)

° Paradigms: Initial

Solution 7
0 (logn)-Level

<




Coarsening
Goals:
o0  Contract similar nodes
o Retain global structural features
o Reduce hypergraph size
Pattern:
o Visitanode
o  Find a similar neighbor
O  Merge pairs
Weights:
o0 Nodes / edges start with w = 1
o  Contracted nodes / edges sum

Weights

<
i
3
1

buluasieo)

‘e
@ O

<




Heavy Edge Coarsening

e Visit nodes randomly

e Compare node pairs by shared edges

Se(u,v) = Z

u,ve€eck

® Only considers local information




Motivation for Embedding-Based Coarsening

Initial Structure Without Embedding: Multiple pairs have highest similarity.
|| (@ | (@] (@
e B A ‘B

O @;@




Embedding-Based Coarsening

® [Lstablishes a fixed visit order

O  Prioritizes node pairs that share ernbedding—based features

So(u) = max (w)Te(v)

vel'(u),uv Wy Wy



Embedding-Based Coarsening

® [Lstablishes a fixed visit order

O  Prioritizes node pairs that share embedding—based features

T
So(u) = max (w)Te(v)
vel'(u),uv Wy Wy

® Scores partners with embeddings:

Se(“’”):(E(ZZiv)) 2 \e\wfl

ecl'(u)NI'(v)



Embeddings for Newly Contracted Nodes

e Coarse nodes need embeddings
® Average embeddings of existing nodes:

® Ifxisacoarse node that contains input nodes v:

Wy

e(u) = = > e(vy)

1=0



Effects on Runtime

e Embedding:
O  One-time cost
o Varies by method
® Ordering:
o Assign scores per-node at each level
o Can reuse previous level's scores

o  Symmetric comparison between all neighborhood pairs [O(n?)]



Considered Implementations

® DProposed Implementations:
o  KaHyPar: embedding-based coarsening
o KaHyPar: embedding-based coarsening & flow-based refinement
0  Zoltan: embedding-based coarsening
® Baseline:
o KaHyPar: community-based coarsening
KaHyPar: community-based coarsening & flow-based refinement
Zoltan
PaloH
hMetis

O O O O



Partitioning Benchmark

® 96 Hypergraphs ® 2 Partitioning Objectives:
O Sparse matrix collection O cut
® 7 Partition counts o connectivity (k-1)
o k=2 418, 16,32, 64,128 e 20 trials per combination
® (embeddings ® Metrics:
o FOBE & HOBE O  Macro-mean
0 Node2Vec O  Macro-min
0 Metapath2Vec++ 0  Macro-max
o FOBE+HOBE Combination 0  Macro-std
o All 4 Combination e Over 500,000 individual trials



Results: Direct
Improvement

Compare embedding-based
implementation to corresponding

baseline

Average connectivity improvement.

4 Parts(k): 2 4 8 16 32 64 128
KaHyPar 8% 13% 10% 6% 4% 3% 1%
KaHyPar(flow) 9% 11% 4% 2% 3% 2% 0%
Zoltan 48% 28% 15% 14% 9% 5% 3%

Average cut improvement.

4 Parts(k): o 4 8 16 32 64 128
KaHyPar 8% 16% 9% 1% 3% 1% 0%
KaHyPar(flow) 10% 11% 3% 1% 1% 1% -1%
Zoltan 51% 45% 51% 41% 31% 14% 8%

Greatest improvement for smaller #
of partitions




Results: Average Improvement w.r.t. KaHyPar Flow

All methods compared to

KaHyPar with flow-based Zoltan with embedding-based

refinement coarsening outperforms KaHyPar
Connectivity Cut

mean mean

2 4 8 16 32 64 128 2 B 8 16 32 64 128

B hMetis B KaHyPar B Zoltan EC:FOBE
BN Zoltan B KaHyPar Flow Wz KaHyPar Flow EC:FOBE
i PaToH



Contribution Summary

e Graph Embedding

©)

©)

FOBE & HOBE bipartite embedding
Embedding-based coarsening for hypergraph partitioning

e Automatic Hypothesis Generation

©)

o O O O

Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

Conditional biomedical abstract generation



Motivation:
Drug Discovery

® Steps:

(@)

O O O O O

Select disease to treat

Identify ~1000 target substances
Determine ~10 candidates
Prioritize investment

Conduct ~1 human trial

Go to market

e Want to give information:

(@)

(@)

(@)

To decision makers
Earlier in the process

Cheaply



Wealth of Available
Data

National Library of Medicine
provides public databases
MEDLINE contains nearly 30
million biomedical abstracts
Data available through PubMed

New papers per-year is increasing!

0 Nearly 1 million last year




The ABC Model

e Hypothesis Generation:
o Identity implicitly available

knowledge
Raynaud's
Syndrome

® Pattern:

Blood
Viscosity

o  Given two terms: A, C
o  Find words related to A

o  Find words related to C
o  Find overlap

e Key Limitations:
0 Only simple connections

O Biased to incremental results




Contribution Summary

e Graph Embedding

o FOBE & HOBE bipartite embedding

o0  Embedding-based coarsening for hypergraph partitioning
e Automatic Hypothesis Generation
Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

o O O O O

Conditional biomedical abstract generation

Moliere: Automatic biomedical hypothesis generation system
Sybrandt, Shtutman, Safro

KDD'17



® Preprocessing
o0  Data collection

o0  Semantic network

Mollere B
o Shortest paths

o Topic models
® Analysis
o  Word distributions

o  Small-scale results



Data Collection ﬁ Tumours evade immune control by

creating hostile microenvironments that

Original Text perturb T cell metabolism and effector
o Titles

O  Abstracts

Sfunction.

Phrases (n-Grams)
o Collected by ToPMine

Predicates evade Immune
Tumors
o Subject, verb, object statements Control
Coded Terms
o Unified Medical Language System Neoplasm:
(UMLS) e Tumor
e Tumour
® Oncological Abnormality




Semantic Network

K—K
Abstracts 'o Embedding
Nearest-Neighbors

Key n-grams

'@ n TF-IDF
Predicates ©_© ®_©

Unified Medical
Language System

Codified Terms .e

Semantic Medical
Database




Query Shortest Paths

Legend:

O Query Term
O Path Node




Topic Modeling

Cluster words in select abstracts
Explore trends
Rely on expert analysis

Example:
o  Venlafaxine - HTR1A
o  Venlafaxine - HTR2A

Keyword Count

Depression Related Keywords Per Topic

[ || I|||II I|I|IIII
7 8

9 10 II 12 13 14 I5 16 17 18 19 20

EN
w
o

Topic Number

=HTRIA =HTR2A



Contribution Summary

e Graph Embedding
o FOBE & HOBE bipartite embedding
o0  Embedding-based coarsening for hypergraph partitioning
e Automatic Hypothesis Generation
Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

o O O O O

Conditional biomedical abstract generation

Large-scale validation of hypothesis generation systems via
candidate ranking
Sybrandt, Shtutman, Safro

BigData'18



Existing Validation

e Methods:
0 Recreate 7 experiments from early 90's
0 Domain-specific statistics
O  Expertinterpretation
o  Publish in medicine

e Complications:
o Too narrow: Only specific domains
o Too slow: Human in the loop
0 Too small: Datasets of <10 hypotheses



Validation via Ranking

® Drug discovery is ranking
® Requires only a ranking criteria

® Standard metrics
o ROC
o PR

o Recommender Metrics

® Requires:

True Positive Rate

o  Positive and negative samples

False Positive Rate




Validation Dataset

Positive Samples: Predicates
0 New predicates added every year
0 Perform temporal holdout

Negative Samples: Random
o Generate pairs of terms
o Select unpublished pairs

Strengths:

o Simple
O  Scalable

Weaknesses:

o  Class balance

o Distribution of neg. terms

# New Predicates

New predicates added each year.

700000 -

- w
& & 3
o o o
o o o
o o o
o o o

200000 A

100000 A

1960

1970

1980

1990
Year

2000

2010




Embedding Measures @
e Heuristic principles: @
o  Similar keywords <> @
O  Shared similar topic
o Topic distance correlation @ @

® Measured with:

o Cosine Sirnilarity

o  Euclidean Distance @ ::

<D Topic from a - ¢
O Keyword




TOpIC Network Published Connection
Measures High Connectivity

e Heuristic principles:
o Connectivity
o Clustering
o  Shortest Path

® Measured:

Path length

Path betweenness Noise Connection

Low Connectivity

Centralities

o O O O

Modularity




Validation Results

Cut year: 2010

8,638 total queries

o half positive, half negative
Important measures:

o Polynomial

o  Euclidean distance of keywords

o Cosine similarity of shared topic

True Positive Fraction

1.0

ROC Published vs. Noise

0.6 |-

0.4

0.2

(Area) Metric Name
(0.578) BestCentrL,
(0.609) TopicCorr

(0.651) TopicNetCCoef
(0.659) TopicWalkBtwn
(0.686) BestTopicPerWord
(0.709) CSim

(0.719) BestCentrCSim
(0.783) L,

(0.834) PolyMultiple

0.2

0.4

0.6 0.8

False Positive Fraction

1.0



Real World
Application

Validation does not tell us how

Moliere performs in reality
Moliere ranked 40,000 genes
DDX3 ranked highly

Confirmed in laboratory

HIV-TAT
.

HIV-T‘I% o -
A Tat 1 DDX3 Inhibitor

itor blocks SGs formation

Inhi
« |* +DDX3 Inhibitor
o+ COcaine

L]
0
° o
B Tat E
q \ patho-SG —(
R : DDX3

Formation of patho-SGs

Inhibitor protects
from Tat/cocaine toxicity

€ + cocainé| ° Tat
patho-SG '

enlarged patho-SGs
and death of the neurons

Inhibition of the DDX3 prevents HIV-1 Tat and cocaine-induced
neurotoxicity by targeting microglia activation

Turner, Broude, Pena, Lizzaraga, Zhu, Safro, Wyatt, Shtutman

Aksenovam, Sybrandt, Chu, Sikirzhytski, Ji, Odhiambo, Lucius, @




Contribution Summary

e Graph Embedding

o FOBE & HOBE bipartite embedding

o0  Embedding-based coarsening for hypergraph partitioning
e Automatic Hypothesis Generation
Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses
Agatha: deep-learning hypothesis generation

o O O O O

Conditional biomedical abstract generation

Are abstracts enough for hypothesis generation?
Sybrandt, Carrabba, Herzog, Safro

BigData'18



® Pros:

P ros an d C ons o Contains greater detail

o Contains auxiliary information

of Full Text R

0  Challenging to parse PDFs
o Noisy
o  Expensive

m  Computationally

m  Financially




PubMed Central
(PMC)

Publically available full text papers
Limited in scope
Only recent papers

Plain text release

T~

ipi iyl

PubMed
Central



Experimental Setup

Retrain multiple instances of Moliere

Use different subsets of MEDLINE and PubMed Central

Perform validation on the same set of predicates

Corpus

Total Words

Unique Words

Corpus Size

Median Words
per Document

PMC Abstracts
PMC Full-Text
MEDLINE
1/2 MEDLINE
1/4 MEDLINE
1/8 MEDLINE
1/16 MEDLINE

109,987,863
1,860,907,606
1,852,059,044
923,679,660
460,384,928
229,452,214
114,385,607

673,389
6,548,236
2,410,130
1,505,672

020,734

565,270

349,174

1,086,704
1,086,704
24,284,910
12,142,455
6,071,227
3,035,613
1,517,806

102
1594
71
i
71
71
71




Validation Results

Cut date: 2015

Full text increase performance by
10%

Euclidean distance of word
embeddings most valuable for full
text

Full text has less benefit from topic
models

Full text takes 45x longer to

perform one query

0.9

0.8

0.

-

0.

(=)

0.5

# AUCL2 = AUC Polynomial

0.684



Contribution Summary

e Graph Embedding

o FOBE & HOBE bipartite embedding

o0  Embedding-based coarsening for hypergraph partitioning
e Automatic Hypothesis Generation
Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

o O O O O

Conditional biomedical abstract generation

AGATHA: Automatic Graph-mining And Transformer based
Hypothesis generation Approach
Sybrandt, Tyagin, Shtutman, Safro




® Slow analytics — Fast inference

M Ot I Vat I O n ® Heuristics — Data-driven measures

® Abstract focus — Sentence focus




Agatha Pipeline

MEDLINE

Parse
Abstracts

\ A

Semantic Graph

ﬁ@g@ed Terrgé)‘ (\Nn-Grams :
i — I
—ﬁmbed GraplyLP Training Examples Model >

Semantic Graph:

o Split abstracts into sentences
o  Parse sentences into entities, phrases, and lemmas
o Compute nearest-neighbors network of sentences
o Cross reference predicate data

Predicate Modeling
o0  Embed graph
o  Learn ranking criteria

~

\
)

e



Semantic Graph

Sentences:
o Connected by nearest-neighbors
o Edges to contained elements
Predicates
o Edges to info supplied by
SemMedDB
Size:
O 2015 Release:
m 188 M. Nodes
o 2020 Release:
m 270 M. Nodes

Sentence

Lemma

(rGrm)



Agatha Deep
Learning Model

Goal: train a transformer encoder to
accept two query terms and
produce ranking criteria

Objective: Margin Ranking Loss
Model: Transformer Encoder

Graph Embedding

Output Ranking Criteria

Feed Forward

Mean Embedding

Add & Normalize

Feed Forward ‘

A

Add & Normalize

’ Multi-Head Attention ‘

Feed Forward

Lookup Graph Embeddings

A

B

Sampled Sampled
A-Predicates | B-Predicates

Input Pair of Coded Terms: A & B

X N



Agatha Deep
Learning Model

Goal: train a transformer encoder to
accept two query terms and
produce ranking criteria

Objective: Margin Ranking Loss
Model: Transformer Encoder

Graph Embedding

Output Ranking Criteria

Feed Forward

Mean Embedding

Add & Normalize

Feed Forward ‘

A

Add & Normalize
’ Multi-Head Attention ‘

Feed Forward

Lookup Graph Embeddings

A

B

Sampled
A-Predicates

Sampled
B-Predicates

Input Pair of Coded Terms: A & B

X N



Predicate Modeling Objective

L(a, B) = f: L (Psaﬂ, Nscrgjg) + En: L (PSaﬂ, Nswpﬁ;’})

i=0 §=0
where L(p,n) = max (0, m — H(p) + H(n))



Predicate Modeling Objective

/
n

L(a,B) = L (PSQB, Nscrg%) + Z L (PSag, Nswpgg)
i=0 5=0

where L(p,n) = max (0, m — H(p) + H(n))

Loss associated with
two connected
terms




Predicate Modeling Objective

Negative Sample Negative Sample
Positive Sample (Scramble) (Swap)

L, 8) =Y L (Psaﬂ, Nscrﬁjg) +> L (PSaﬂ, Nswpf;;’é)
0 =0

/L where L(p,n) = max (0,m — H(p) + H(n))

Loss associated with

two connected
terms




Predicate Modeling Objective

Negative Sample Negative Sample
Positive Sample (Scramble) (Swap)
n T~ N n’ N
(o, Z L (PSag, Nserl}) + Z L (PSag, Nswpl))

/L where L(p,n) = max (O, m — H(p) +H(n))

Loss associated with

two connected i ) i
margin rankmg loss margin Model output
terms

Z;




Predicate Formulation

PSas = {o, B, 1™, ..., 90,0, A}

where ;%) ~ {T'(a) — ['(8)}, and +{”) ~ {T'(8) — I'(a)}



Predicate Formulation

where 7

PSap = {O‘,B,v§“)7---,v§“),v( .
)~ {T(a) = T(B)}, and 77 ~ {T'(B)

1

a given term

Set of predicates using

Set containing two terms and other associated predicates

1

Sampled predicate

,%@}

— (@)}



Negative Samples

NScrop = {z, 9,71, 724}

® Scramble (easy):
where z,y ~ T,

and vy; ~ P,
s.t. T'(x)NT(y) =0

o SW&p (hard): NSWpaB {x Y, fyg )7 s 77&6)7 f}éy)? . ,,ng)}
where x y ~ T,
and 7;") ~ {T'(z) = T'(y)},

and %” ~ {T(y) — T(z)},
s.t. I'(z) NT'(y)



Agatha Deep
Learning Model

Goal: train a transformer encoder to
accept two query terms and
produce ranking criteria

Objective: Margin Ranking Loss
Model: Transformer Encoder

Graph Embedding

Output Ranking Criteria

Feed Forward

Mean Embedding

Add & Normalize

Feed Forward ‘

A

Add & Normalize
’ Multi-Head Attention ‘

Feed Forward

Lookup Graph Embeddings

A

B

Sampled
A-Predicates

Sampled
B-Predicates

Input Pair of Coded Terms: A & B

X N



Model Formalism

® Prediction Model:
H(X) = sigmoid( MW)
M=+ > En(FF(e(x:)))
‘X‘ z,€EX
Eii1(x) =E(Fi(x)), and Ey(x) ==

e Encoder Block:
E(X) = LayerNorm(F F (o) + «)
where FF(Y) = max (0, YW) W'
and « = LayerNorm(MultiHead(X) + X)

Output Ranking Criteria

Feed Forward

Mean Embedding

Add & Normalize

Feed Forward 1

A

Add & Normalize

‘ Multi-Head Attention ‘

Feed Forward

Lookup Graph Embeddings

A|lB

Sampled Sampled
A-Predicates | B-Predicates

Input Pair of Coded Terms: A & B

X N



Predicate Modeling

® Attention: learned Weighted averages

Attent'on(Q K.V ) — softmax ( T) V
1 Y J
\V dk




Predicate Modeling

Think: if key matches query
e Attention: learned weighted averages [—

: QKT
Attention(Q), K, V') = softmax V
Vdy [

... then add in value




Predicate Modeling

® Attention: learned Weighted averages

Attention(Q), K, V') = softma ( : T) ¥
1 , I\, X
V dk

® Multi Head Self Attention:
MultiHead(X) = [hy;. . .; hg] WY
where h; = Attention (XWi(l), XWi(Q) , XWz'(S))



Predicate Modeling

® Attention: learned Weighted averages

Attent'on(Q K.V ) — softmax ( T) V
1 Y J
\V dk

Compute multiple

MultlHead(X) — [h17 ceey hk]W(4) % times and merge

where h; = Attention (X WY, xW®, x W)
[T~

Derive Q, K, and V from X

® Multi Head Self Attention:




Agatha Deep
Learning Model

Goal: train a transformer encoder to
accept two query terms and
produce ranking criteria

Objective: Margin Ranking Loss
Model: Transformer Encoder

Graph Embedding

Output Ranking Criteria

Feed Forward

Mean Embedding

Add & Normalize

Feed Forward ‘

A

Add & Normalize
’ Multi-Head Attention ‘

Feed Forward

Lookup Graph Embeddings

A

B

Sampled
A-Predicates

Sampled
B-Predicates

Input Pair of Coded Terms: A & B

X N



Graph Embedding

® Uses PyTorch-BigGraph (PTBG) distributed embedding

e Similarity measure:
O  biased dot product of nodes

o includes typed translation

s(z‘j>=e<i>1+e<>+T<“>+z e (c)e + T



Graph Embedding

Each is a type

® Uses PyTorch-BigGraph (PTBG) distributed embedding

° Similarity measure:

Sentence

o  biased dot product of nodes

. . Predicate
o includes typed translation

s(tj) =e(2)1 +e(J)1 + Tl(titj) + Z e(?) (B(J)k + Tlgtitj))

/] A AN N

Estimated sim. First dim. is bias Translated dot T translates
btwn.iandj product between types




Graph Embedding Objective

® Minimizes Softmax Loss:

o Positive probability close to 1
o All negative probabilities close to 0

100
GraphLoss;; = —s(ij) + log Z eXp (S (xffj) éij)))

n=0



Graph Embedding Objective

® Minimizes Softmax Loss:
o Positive probability close to 1
o All negative probabilities close to 0

100
GraphLoss;; = —s(ij) + log Z eXp (S (xffj) gj)))

AT /N

ij score must be higher

positive similarity

than 100 negative samples




Agatha Deep
Learning Model

Goal: train a transformer encoder to
accept two query terms and
produce ranking criteria

Objective: Margin Ranking Loss
Model: Transformer Encoder

Graph Embedding

Output Ranking Criteria

Feed Forward

Mean Embedding

Add & Normalize

Feed Forward ‘

A

Add & Normalize

’ Multi-Head Attention ‘

Feed Forward

Lookup Graph Embeddings

A

B

Sampled Sampled
A-Predicates | B-Predicates

Input Pair of Coded Terms: A & B

X N



Agatha Validation
Results 1

B AUCL2 ® AUC Polynomial ™ Transformer

Trained on same holdout as Moliere 0901

experiments (2015)
o Used only abstracts
Same set of predicates

100's queries per minute

0.643]




Beyond the Moliere Benchmark

® Moliere benchmark had significant issues
o  Balanced classes
o Non-representative negative samples
e New validation task
o Subdomain all-pairs recommendation
® Procedure:
o Identify popular types of predicates
Find 100 most popular new findings within each predicate type

Predict all pairs of queries within popular entities
Rank

Compute recommendation system metrics

o O O O



Gene to Cell
Function

Top 100 predicates of this type.

Area under curves:
o PR:0.44
o ROC:0.62

Top ranked predicate is positive
Half of the top-10 are positive

Each one-to-many query on average:
O 5.7 of top 10 are positive

o  Positive result within first two



Gene to
Neoplastic
Process

Top 100 predicates of this type.

Area under curves:
o DPR:0.34
o ROC:0.65
Second ranked predicate is positive
Half of the top-10 are positive
Each one-to-many query on average:
O 4.5 of top 10 are positive

o  Positive result within first two



Contribution Summary

e Graph Embedding

o FOBE & HOBE bipartite embedding

o0  Embedding-based coarsening for hypergraph partitioning
e Automatic Hypothesis Generation
Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

o O O O O

Conditional biomedical abstract generation

CBAG: Conditional Biomedical Abstract Generation
Sybrandt, Safro




Motivation: Abstract

Generation
User-Supplied

More interpretable hypothesis Keywords

generation ° °

Want to explore a few connections

thoroughly

Present information in familiar way
v v

/ ,
/ Ranking / <~ CBAG

/ /

Textual /

/

/ Description / |




Background Language Model

® DProbability of element given previous
— H Pr(8i|817 e Si—l)
1=1
e Conditional model adds extra dependency

Pr(s|c) = HPr Sils1,.+.,8i-1,¢)

® Generate text by iteratively sampling Pr



CBAG Overview

Input condition:

o Year of publication

o Author-supplied keywords
Input text:

o All prior tokens
Desired output:

o Probability of next token

Repeatedly sample to generate text

Year Keywords In this study...

Condlition PreV.I Text

Next Token




CBAG Model

Multi-Task Objective

(@)

Predicts text and biomedical

domain info

Multi-Head

(@)

(@)

(@)

Self Attention
Masked Attention

Encoder-Decoder Attention

Text Tokenization

(@)

Subword Regularization

Next-Token Predictions

Partof  Dep. Entity
Token Speech  Tag Type
Softmax | Softmax | Softmax | Softmax
Linear Linear Linear Linear
' x N
Add & Normalize <&

Feed Forward

S

Add & Normalize <& .
2% Multi-Head d
et R e ‘I --------------- \ ; Encoder-Decoder ]
: . Attenti i
! Add & Normalize <& | * eilon :
E ‘ Feed Forward ‘ E ; [ E
E ¢ d E Add & Normalize <€ |
: Do Masked !
: Add & Normalize <& . Multi-Head ]
: Multi-Head Self P Self Attention |
E ‘ Attention ‘ E E A E
: A L :

Embedding Embedding
Year | MeSH Terms Abstract Text

Input Condition

Positional
Encoding



Next-Token Predictions
Partof  Dep. Entity
CBAG Components O Speech _Tap __Type
p Softmax | Softmax | Softmax | Softmax
Linear | Linear | Linear | Linear
e Multi-Task Objective t + + _______ + B
. . . ‘ 'x N

o  Predicts text and biomedical | | Add & Normalize <€
domain info | FeedForward | ]
e Multi-Head P ;
. ! Add & Normalize <& |
o  Self Attention 2% : Multi-Head
. P e Encoder-Decoder 1
o  Masked Attention : 1 , ol Attention :
! Add & Normalize <& | * + :
o  Encoder-Decoder Attention | FeedForward | | b= | 5
® Text Tokenization 5 T— ;IR il
. o aske :
o Subword Regularization || AdiE e o) ‘ e ‘ :
i Multi-Head Self oo |
E ’ Attention ‘ E ; A E
; A o :

S e Ay E " | Positional

Encoding

Embedding Embedding
Year | MeSH Terms Abstract Text
Input Condition




CBAG Objective

Text PoS DepVJ Entity

L(t,p,d,e,c) = Lp(t,t,c)+ Lp(p,t,c) + Lp(d,t,c)+ Lg(e,t,c)




CBAG Objective

Text PoS DepVJ Entity

L(t,p,d,e,c) = Lp(t,t,c)+ Lp(p,t,c) + Lp(d,t,c)+ Lg(e,t,c)

Negative Log Likelihood

Label | Text | Cond

\ 4 / n | |
(4,1, c) Z hg) + log Zexp (hg”)
i—1 jAi
where h(H) = softmax H({t1,.. ., ti1

Model Hidden
m m Task weight




Annotations

We add domain-specific
information through annotations
No large annotation datasets
Rely on pretrained models

o Scispacy
Types:

o Part of Speech

o  Entities

0 Dependency Tags

The combined neurotoxicity of Tat GENE_OR_GENE_PRODUCT
protein and | cocaine SIMPLE CHEMICAL was blocked by
RK-33 GENE_OR GENE PRODUCT in rat ORGANISM and

mouse cortical cultures ORGANISM

nmod

case

compound

conj
v cc ‘ l amod I

in rat and mouse cortical cultures.

ADP NOUN CCONJ NOUN ADJ NOUN



CBAG Components

Multi-Task Objective

o0  Predicts text and biomedical
domain info
Multi-Head
o  Self Attention
0  Masked Attention
o  Encoder-Decoder Attention

Text Tokenization

(@)

Subword Regularization

Next-Token Predictions

Partof  Dep. Entity
Token Speech  Tag Type
Softmax | Softmax | Softmax | Softmax
Linear Linear Linear Linear
-------------------------- ] X N
Add & Normalize <&

Feed Forward

—

Add & Normalize <& .
2% Multi-Head d
et R e ‘I --------------- \ § Encoder-Decoder ]
: . Attenti i
! Add & Normalize <& | * eimn :
E I Feed Forward ’ E ; I E
E ¢ d E Add & Normalize <€ |
: Do Masked !
: Add & Normalize <&y . Multi-Head ]
: Multi-Head Self P Self Attention |
E ’ Attention ‘ E E A E
; A o :

Embedding Embedding
Year | MeSH Terms Abstract Text

Input Condition

Positional
Encoding



Multi-Headed Attention

Think: if key matches query
e Attention: learned weighted averages [—

: QKT
Attention(Q), K, V') = softmax V
Vdy [

... then add in value




Multi-Headed Attention

® Attention: learned Weighted averages

k

e Multi Headed Self Attention:
MultiHead(X,Y) = [hy;...; hg] W
where h; = Attention (X W,L-(l), YWZ.(2), YWi(‘g))
_—7
Query from X

Keys and Values from Y




Model Details

H(t’ C) - Dd GF"‘“iF RNA Editing I[Start] l genome lmodlflcatlonl by |
Di—|—1 — D(Dzy Ee) and .DO =1+ PE - ler;;grllg;g (PO17893) P.0 P1 P.2 P.3
Eipy = E(E;) and Ey = ¢ I= e iy

E . SeIIfAtterlltlon . E E I I\lAaskec'iSeIfA}tentioP ‘ i
£(X) = LayerNorm(FF () + ) P R oo - 1 J |
a = LayerNorm(MultiHead (X, X) + X) . i : ED:Attentlion : 1
g S N A J---

D(X,Y) = LayerNorm(FF(a) + «) | | | [

Gene or

« = LayerNorm(MultiHead(8,Y") 4+ 53) s o "mod | Gene-Prod.
Subword POS Dep. Tag Entity Class
B = LayerNorm(MultiHead (X, X) + X)

FF(X) = max(0, XW)W'




CBAG Components

Multi-Task Objective

(@)

Predicts text and biomedical

domain info

Multi-Head

(@)

(@)

(@)

Self Attention
Masked Attention

Encoder-Decoder Attention

Text Tokenization

(@)

Subword Regularization

Next-Token Predictions

Partof  Dep. Entity
Token Speech  Tag Type
Softmax | Softmax | Softmax | Softmax
Linear Linear Linear Linear
-------------------------- ] X N
Add & Normalize <&

Feed Forward

—

Add & Normalize <& .
2% Multi-Head d
et R e ‘I --------------- \ § Encoder-Decoder ]
: . Attenti i
! Add & Normalize <& | * eimn :
E I Feed Forward ’ E ; I E
E ¢ d E Add & Normalize <€ |
: Do Masked !
: Add & Normalize <&y . Multi-Head ]
: Multi-Head Self P Self Attention |
E ’ Attention ‘ E E A E
; A o :

Embedding Embedding
Year | MeSH Terms Abstract Text

Input Condition

Positional
Encoding



Unigram Subword
Regularization

Goal:

o Limit number of unique tokens
o Reduce out-of-vocab words

WordPiece

o  Find common substrings

0  One for each letter
Subword regularization

o Probabilistically tokenize words

immju|n|o|s|u|p|p|r|e|s|s|i|v]|e
imm | uno suppress ive
immun |o| sup press ive

im [mu| nos |up | pres sive




Subword Embedding

Assert number of subword units

©)

16,000

Initial random embeddings

Positional Encoding

©)

Sinusoidal embedding function

Masked Self Attention

@)

©)

Each subword gains context

Larger words built from subwords

imm | uno suppress ive
e(imm) e(uno) e(suppress) e(ive)
+ + + +

e(P1)

e(P2)

e(P3)

e(P4)

C

e(A)

e(AB)

e(ABC)

e(ABCD)




Next-Token Predictions
Partof  Dep. Entity
CBAG Components XN Speech_Tag __Type
p Softmax | Softmax | Softmax | Softmax
Linear Linear Linear Linear
e Multi-Task Objective t + + _______ + B
. . . | ' x N

o  Predicts text and biomedical || Add & Normalize <€ |
domain info 5 | FeedForward | ||
e Multi-Head P ;
. ! Add & Normalize & |
o  Self Attention 2% : Multi-Head
. [ ) s : Encoder-Decoder 1
O  Masked Attention : 1 : ol Attention :
! Add & Normalize <& | * + :
o  Encoder-Decoder Attention | FeedForward | | b= | 5
® Text Tokenization 5 T— ;IR il
; : : aske :
o Subword Regularization T ‘ i ‘ :
5 Multi-Head Self Do £ Ae“ L ]
: Attention v ]
: A L :

S e Ay E " | Positional

Encoding

Embedding Embedding
Year | MeSH Terms Abstract Text
Input Condition




Experimental Design

e Holdout 30% of MEDLINE for testing
e Input:

O Year

0 Metadata Keywords

o Title sentence
e Output:

0  Generate text until "end-of-abstract” special token
® Metrics:

o Compare 7-gram recall

o Bleu, METER, CIDEr, etc.
® Baseline: GPT-2



Example Abstract: CBAG

Hierarchically Micro- and Nanopatterned Topographical Cues for Modulation of Cellular Structure and Function.

the ability to integrate multiple physiological cues and thereby mediate many cellular functions is critical for many complex life history processes.
despite recent advances in high-throughput imaging of biomolecules and their spatiotemporal integration into dynamic structure and
function, the precise structural organization and temporal structure of tissue architecture remains poorly understood. here, we present an
efficient system for temporally and spatially mapping micro- and nanopatterned topographical cues in organ-specific spatial and temporal
properties using multiple imaging modalities. the micro- /nanopatterned geometrical cues can be localized to cell membranes, cells, and
proteins. the spatial and temporal dynamics of these local signals are precisely represented by the cross-correlation function, which forms the
basis of a geometrical model that accurately provides spatiotemporal information about the spatial location and spatial coordinate of the labels
and their functionalities. the model is also capable of correlating the properties of neural cells within their network without affecting the spatial
and temporal organization of their spatial features, as well as those of their surrounding tissue. as an example of this model, cell types grown as
multilayers are described.



Example Abstract: GPT-2

Hierarchically Micro- and Nanopatterned Topographical Cues for Modulation of Cellular Structure and Function.

[\n] [\n] The first example of what happens when an artificial neural network’see’ complex features on a computer screen is provided by the
vision of people with sight loss. The most recent results (e.g., sce Krueger’s blog) suggest that a person who has a damaged retinal pathway for
visual light-scattering called LID is able to’see’ objects using low power laser sources. The finding is unexpected because it suggests an adaptive
mechanism for recovering limited visual function. The finding has profound implications for understanding how the retina and brain develop,
how vision is learned, and how people can potentially regain impaired vision with new retinal implants. [\n] The retinotopic map shows
which parts of the retina belong to what parts of the visual field (more details in the video below). [\n] The following images are from a
retinotopic map showing a person who has lost some peripheral vision due to an injury in his optic nerve and retinal pigment epithelium.

Note that he can make out details when looking toward the left, and when looking toward the right, details become distorted or are obscured.



Comparison to GPT-2

Proportion

Sentence-wise METEOR scores.
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Varying Condition

Condition Response

D003270: Contra- ...that, during a prospective observational period, the patients were aware of

ceptive Agents the possibility of adverse cardiac events.

D003634: DDT ...that the aromatic (g)-tse, which is often produced in fruit, is potentially
useful to suppress green algae as well as pesticide toxicity.

D004042: Unsatu- ...that vitamin e levels are associated with early childhood health consequences.

rated Dietary Fats

D006046: Gold ...that the nanoparticles provide improved sensitivity to gold nanoparticles, and

they are sensitive to ag-b interaction rather than ca-a interaction.

D005395: Fish Oils ...that the combination of pinkland and fish oil intakes (ca-like and ca-like) im-
proves the antioxidant effect of yinneria (tricapsa vul) and that can significantly
decrease food intake.

Table 2: Differing generations of the same prompt given various MeSH preconditions. We record the first
sentence completing the prompt “In this study, we found...”



In Summary

e Graph Embedding

©)

©)

FOBE & HOBE bipartite embedding
Embedding-based coarsening for hypergraph partitioning

® Automatic Hypothesis Generation

o O O O O

Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

Conditional biomedical abstract generation
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In Summary

e Graph Embedding

©)

©)

FOBE & HOBE bipartite embedding
Embedding-based coarsening for hypergraph partitioning

® Automatic Hypothesis Generation

o O O O O

Moliere: hypothesis generation via topic modeling
Validation of hypothesis generation via candidate ranking
Evaluation of corpora on generated hypotheses

Agatha: deep-learning hypothesis generation

Conditional biomedical abstract generation



