
Exploiting Latent Features of Text and
Graphs

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Justin Sybrandt

May 2020

Accepted by:

Dr. Ilya Safro, Committee Chair

Dr. Amy Apon

Dr. Sez Atamturktur

Dr. Brian Dean

Dr. Alexander Herzog

Abstract

As the size and scope of online data continues to grow, new machine learning

techniques become necessary to best capitalize on the wealth of available information.

However, the models that help convert data into knowledge require nontrivial pro-

cesses to make sense of large collections of text and massive online graphs. In both

scenarios, modern machine learning pipelines produce embeddings — semantically

rich vectors of latent features — to convert human constructs for machine under-

standing. In this dissertation we focus on information available within biomedical

science, including human-written abstracts of scientific papers, as well as machine-

generated graphs of biomedical entity relationships. We present the Moliere system,

and our method for identifying new discoveries through the use of natural language

processing and graph mining algorithms. We propose heuristically-based ranking cri-

teria to augment Moliere, and leverage this ranking to identify a new gene-treatment

target for HIV-associated Neurodegenerative Disorders. We additionally focus on the

latent features of graphs, and propose a new bipartite graph embedding technique.

Using our graph embedding, we advance the state-of-the-art in hypergraph partition-

ing quality. Having newfound intuition of graph embeddings, we present Agatha, a

deep-learning approach to hypothesis generation. This system learns a data-driven

ranking criteria derived from the embeddings of our large proposed biomedical se-

mantic graph. To produce human-readable results, we additionally propose CBAG,

ii

a technique for conditional biomedical abstract generation.

iii

Dedication

To Emma Cinatl,

You’re the most loving, caring, affectionate, and supportive person I’ve ever encoun-

tered. I couldn’t have asked for a better partner to persevere with through the last four

years. Thank you for reminding me to see the beauty in the ordinary, for teaching me

to enjoy a good hike, for encouraging me when times were tough, and for celebrating

with me now that we’ve made it through.

With love,

Justin Sybrandt

iv

Acknowledgments

I would like to thank Ilya Safro, as well as the members of my committee, for

guidance over these last four years. I am grateful to have had mentors so amenable

and accomplished. I would also like to acknowledge my collaborators: Michael Shtut-

man on Chapters 5, 6, and 8, Angelo Carrabba on Chapter 7, Ruslan Shaydulin on

Chapter 4, and Ilya Tyagin on Chapter 8.

Furthermore, I would like to thank Lisa and Larry Sybrandt, my parents,

for raising me to give my best to everything I do. Thank you to my siblings, Jen-

nifer and Joseph Sybrandt, for keeping me grounded. To Marilyn and Darrel Apps,

my grandparents, for providing ever-present encouragement and enthusiasm. To my

grandmother, Kayleen Sybrandt, for mailing countless comic strips full of three-toed

sloths and road-crossing chickens, for long conversations full of Seinfeld references,

and for never-wavering love full of optimism.

Lastly, I would like to thank all of my friends and colleagues, of which there

are too many to list here. Your contributions, both social and scholarly, were crucial.

I would specifically like to thank everyone who I had the pleasure of working alongside

in our lab group: Angelo Carrabba, Varsh Chauhan, Joey Liu, Korey Palmer, Zirou

Qiu, Ehsan Sadrfaridpour, Ruslan Shaydulin, Ilya Tyagin, and Hayato Ushijima-

Mwesigwa. What started as a beige windowless office grew into a home away from

home.

v

Funding

Justin Sybrandt has received funding through both the US Department of Ed-

ucation through the GAANN DAISE fellowship program, as well through the National

Science Foundation, Award #1633608, through the NRT RIES fellowship program.

Any opinions, findings, conclusions, or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the National

Science Foundation or the US Department of Education.

vi

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

Funding . vi

List of Tables . x

List of Figures . xii

1 Introduction . 1
1.1 Research Objectives . 2
1.2 Contributions in Summary . 3

2 Background . 8
2.1 Latent Features . 8
2.2 Text Embedding . 13
2.3 Graph Embedding . 21
2.4 Automatic Hypothesis Generation . 23

3 FOBE and HOBE: First- and High-Order Bipartite Embeddings 27
3.1 Background and Motivation . 28
3.2 Methods and Technical Solutions . 32
3.3 Algorithmic Analysis . 42
3.4 Empirical Evaluation . 43
3.5 Significance and Impact . 47
3.6 Sensitivity Study . 51
3.7 Conclusions . 53

4 Partition Hypergraphs with Embeddings 54
4.1 Introduction . 55

vii

4.2 Notation and Preliminary Concepts 59
4.3 Background and Related Work . 62
4.4 Embedding-Based Coarsening . 72
4.5 Experimental Design . 78
4.6 Results . 81
4.7 Conclusion . 89

5 Moliere: Automatic Biomedical Hypothesis Generation System . 91
5.1 Introduction . 92
5.2 Knowledge Network Construction . 100
5.3 Query Process . 108
5.4 Experiments . 111
5.5 Deployment Challenges . 116
5.6 Lessons Learned and Open Problems 118
5.7 Conclusions . 122
5.8 Acknowledgments . 122

6 Large-Scale Validation of Hypothesis Generation Systems via Can-
didate Ranking . 123
6.1 Introduction . 124
6.2 Technical Background . 127
6.3 Validation Methodology . 133
6.4 New Ranking Methods for Topic Model Driven Hypotheses 135
6.5 Results and Lessons Learned . 142
6.6 Case-Study: HAND and DDX3 Candidate Selection 146
6.7 Related Work and Proposed Validation 149
6.8 Deployment Challenges and Open Problems 152

7 Are Abstracts Enough for Hypothesis Generation? 156
7.1 Introduction . 157
7.2 Background: Literature-Based HG 160
7.3 Methodology . 163
7.4 Results . 172
7.5 Tradeoffs . 177
7.6 Lessons Learned and Open Problems 178
7.7 Deployment Challenges . 180
7.8 Conclusion . 182

8 AGATHA: Automatic Graph-mining And Transformer based Hy-
pothesis generation Approach . 184
8.1 Introduction . 185
8.2 Background . 188
8.3 Data Preparation . 194

viii

8.4 Ranking Plausible Connections . 200
8.5 Validation . 204
8.6 Results . 207
8.7 Lessons Learned and Open Problems 212
8.8 Related Work . 214
8.9 Conclusions . 216

9 CBAG: Conditional Biomedical Abstract Generation 218
9.1 Introduction . 219
9.2 Background . 223
9.3 Multi-Conditional Language Model 227
9.4 Data Preparation . 229
9.5 Results . 232
9.6 Related Work . 239
9.7 Future Challenges and Ethical Considerations 242
9.8 Conclusions . 243

Appendices . 245

A Hypergraph Partitioning Details . 246

Bibliography . 258

ix

List of Tables

3.1 Graph Summary. We report the median (md) and max degree for
each node set, as well as the Spectral Radius (SR) and the percentage
of the largest connected component (LCP). 45

3.2 Link Prediction Accuracy vs. Training-Test Ratio. Methods repre-
sented by dashed lines indicate the state-of-the-art, while solid lines
indicate methods presented in this work. 48

3.3 DBLP Recommendation. Note: result numbers from prior works are
reproduced from [79]. 50

3.4 LastFM Recommendations. 50
3.5 Link Prediction Accuracy vs. Sampling Rate. Depicts the effect of

increasing sr from 2 to 1024 on the MadGrades dataset, running 10-
trials of the 50% holdout experiment per value of sr. 52

4.1 Improvement for each implementation of embedding-based coarsening
when compared to its corresponding baseline for both the “cut” and
“connectivity” objectives. Results each use the FOBE embedding in-
stance of embedding-based coarsening. Performance numbers corre-
spond to I macro-summaries (Eq. 4.18) where G = mean. 82

6.1 We generated 20 topics on documents related to tobacco and lung
cancer. Here four top words of the four most relevant topics. 129

6.2 The above summarizes all ROC area results for all considered metrics
on the set of published vs. noise pairs (PvN) and highly-cited vs. noise
pairs (HCvN). Metrics marked with a (*) have been sorted in reverse
order for the ROC calculations. 144

7.1 The above table displays the corpus size for each experimental corpus
we evaluated. Note, each corpus has been filtered to only include
documents available in XML and published before 2014. Additionally,
the above numbers represent each corpus after our initial text-cleaning
process. 169

x

8.1 Model Size. Because embeddings are trained separately from the hy-
pothesis prediction model, both numbers are listed. Embedding num-
bers correspond to the amount of floating-point values associated with
predicate and coded-term embeddings needed to use the model. . . . 200

8.2 AGATHA-512. Above are hypothesis prediction results on biomedi-
cal sub-domains. Indicated along with performance numbers are the
percentage of training data (pre-2015 predates) as well as the training-
data popularity rank out of 6396, with 1 being most popular. Metrics
described in detail in Section 8.5. 208

8.3 Benchmark comparison between Moliere and AGATHA on the same
benchmark. 209

9.1 Full abstracts generated with respect to the same title. 234
9.2 Differing generations of the same prompt given various MeSH precon-

ditions. We record the first sentence completing the prompt “In this
study, we found...” . 235

9.3 CBAG (left) compared to GPT-2 “huge” with 1.5B parameters (right).
Both systems are given the same title as a prompt. CBAG receives
metadata. Results truncated for space. 236

A.1 Hypergraph Details. 246

xi

List of Figures

2.1 A summary of the LDA topic model. 10
2.2 Word2vec architectures. Here each W corresponds to weight matrices.

Note that the training and leading context is typically comprised of
many words, and only one is shown above. 14

2.3 The Transformer Architecture. Note that BERT uses only the encoder
half, while GPT-2 uses only the decoder half. 20

3.1 Combination Neural Network Models. Boxes correspond to dense
neural network layers, each depicts its activation function. Grey layers
only used for the auto-regularized case. 40

4.1 A standard V-cycle, consisting of coarsening, and initial partition, and
uncoarsening. Node size corresponds to the weight of hypothetical
coarse nodes. The dashed line demonstrates the initial partition and
iterative local searches at each uncoarsening level. In this example, the
multilevel hierarchy consists of three levels. 60

4.2 An example where embedding-based coarsening improves quality. Above
we depict an example hypergraph and the set of coarsening pairs that
would all receive the highest similarity score through the traditional
edge-wise similarity function. When the embedding is introduced, we
can prioritize the coarsening pair that best retains the initial global
structure. In this case, we select the DE pair, as this still consists of a
cluster of weight 3 connected to a cluster of weight 2. 60

4.3 The above depicts the relative performance of various partitioners, each
using KaHyPar with flow-based refinement as a baseline. The results
correspond to macro-summaries I (Eq. 4.18), where a value of 1, in-
dicated by the horizontal dashed line, is baseline performance of PB.
We explore different summary statistics G, including mean, max, min,
and standard deviation. 87

xii

4.4 The above depicts per-hypergraph summary statistics, I from Eq. 4.17,
comparing KaHyPar with embedding-based coarsening (P) to KaHy-
Par with community-based coarsening (PB). We use the mean over
trails as our summary statistic G, as denoted by the height of each
bar. A value higher than 1, which is emphasized by the dashed line,
indicates better solution quality. The small black bar at the top of
each graph indicates the standard deviation of trials, and the color of
each bar indicates the statistical significance, where a more saturated
color indicates a lower p-value. Hypergraph names are supplied across
the horizontal axis, and graphs are ordered by relative improvement. 88

5.1 Running times of each network construction phase. All phases run on
a single node described in section 5.4.4. Not shown:moliere: Initial
text processing which was handled by a large array of small nodes. . . 101

5.2 Moliere network construction pipeline. 103
5.3 Moliere query pipeline. 103
5.4 Process of extending a path to a cloud of abstracts. 110
5.5 Distribution of n-grams having to do with depression from Venlafaxine

queries. 113
5.6 Distribution of n-grams having to do with anxiety from Venlafaxine

queries. 114

6.1 Mikolov et al. presented two methods for discovering word embeddings
in [153, 155]. This diagram depicts the CBOW method, highlighting
the intermediate layer. In this diagram, each rectangle represents a
vector, with its internal circles representing that vector’s dimensions.
The diamonds represent the transformation matrices which map input
vectors to a hidden layer, and the hidden layer to the output. Note
how each dimension in the output vectors correspond to a linear com-
bination of hidden layer features. Additionally, note how the features
discovered in the hidden layer corresponds closely to a topic model. . 131

6.2 The above diagram shows a 2-D representation of the embeddings for
over 8 thousand UMLS keywords within Moliere. We used singular
value decomposition to reduce the dimensionality of these vectors from
500 to 2. 132

6.3 The above depicts two queries, a–c1 and a–c2, where a–c1 is a published
connection and a–c2 is a noise connection. We see topics for each query
represented as diamonds via Centr(Ti). Although both queries lead
to topics which are similar to a, c1, or c2, we find that the the presence
of some topic which is similar to both objects of interest may indicate
the published connection. 136

xiii

6.4 Above depicts two topic networks as described in Section 6.4.5. In this
visualization, longer edges correspond to dissimilar neighbors. In red
are objects a and c, which we queried to create these topic models.
We observe that the connectivity between a and c from the published
predicate is much higher than in the noisy example. 141

6.5 The above ROC curves show the ability for each of our proposed meth-
ods to distinguish the Moliere results of published pairs from noise.
We use our system to generate hypotheses regarding 8,638 pairs, half
from each set, on publicly available data released prior to 2,015. We
only show the best performing metrics from Section 6.4.5 for clarity. 145

6.6 The above ROC curves show the ability for each of our proposed meth-
ods to distinguish the Moliere results of highly-cited pairs from noise.
We identify 1,448 pairs who first occur in papers with over 100 cita-
tions published after our cut date. To plot the above ROC curve, we
also select an random subset of equal size from the noise pairs. . . . 145

6.7 Scheme of the hypothesis of Stress-Granule dependent mechanism of
neuroprotection by DDX3 inhibitor. Neurons are curved figures. Treat-
ment with HIV-Tat leads to DDX3-dependent formation of SGs (A),
which transform from “normal” to “pathological” (B). The addition of
cocaine further enlarges the SGs and leads to the death of the neurons
(C). Treatment with DDX3 specific inhibitor blocks DDX3 enzymatic
activity and Tat-dependent SG formation (D) and protects the neurons
from cocaine-induced death (E). 148

7.1 Above depicts the network construction and query pipeline. First,
input from raw data sources is tokenized into meaningful n-grams,
then embedded, and used with other features and sources to create a
nearest-neighbors network. Once the network is constructed, the query
process details how we use shortest paths to identify relevant abstracts
on which we generate LDA topic models. 165

7.2 Above are the ROC curves for each experiment, accompanied by the
AUC for key metrics, as described in [226]. We evaluate a set of 2,000
predicates across each network to calculate each curve. Note that the
L2 metric, which relies entirely on simple vector embeddings, is the
best indication of embedding quality, while the PolyMulti metric
combines others for peak performance. 173

8.1 System Diagram of the AGATHA process. 194
8.2 AGATHA multi-layered graph schema. 194
8.3 AGATHA ranking transformer encoder. Given entity-pair and neigh-

borhoods, looks up graph embeddings and produce ranking criteria.
. 201

8.4 Validation Benchmark 2015 . 209

xiv

8.5 Correlations between Moliere and AGATHA-512 scores on the 2015
benchmark. Green and red dots indicate positive and negative hy-
potheses. 210

9.1 Abstract Generator Model. 228
9.2 Annotations provided by ScispaCy “BIONLP13CG.” 230
9.3 Abstract Generator Example Input. 232
9.4 Score distributions per-sentence comparing GPT-2 Huge with CBAG. 238

A.1 Distribution of nodes and edges for each hypergraph present in our
benchmark. Graphs are sorted by number of nodes. 249

A.2 The above depicts the average improvement of the connectivity objec-
tive for all considered partitioners against all baselines. The values
in each cell correspond to the macro-summary I using G = mean to
summarize trials. 250

A.3 The above depicts the average improvement of the connectivity objec-
tive for all considered partitioners against all baselines. The values
in each cell correspond to the macro-summary I using G = min to
summarize trials. 251

A.4 The above depicts the average improvement of the connectivity objec-
tive for all considered partitioners against all baselines. The values
in each cell correspond to the macro-summary I using G = max to
summarize trials. 252

A.5 The above depicts the average improvement of the connectivity objec-
tive for all considered partitioners against all baselines. The values
in each cell correspond to the macro-summary I using G = std to
summarize trials. 253

A.6 The above depicts the average improvement of the cut objective for all
considered partitioners against all baselines. The values in each cell
correspond to the macro-summary I using G = mean to summarize
trials. 254

A.7 The above depicts the average improvement of the cut objective for
all considered partitioners against all baselines. The values in each
cell correspond to the macro-summary I using G = min to summarize
trials. 255

A.8 The above depicts the average improvement of the cut objective for all
considered partitioners against all baselines. The values in each cell
correspond to the macro-summary I using G = max to summarize
trials. 256

A.9 The above depicts the average improvement of the cut objective for all
considered partitioners against all baselines. The values in each cell
correspond to the macro-summary I using G = std to summarize trials. 257

xv

Chapter 1

Introduction

Data on the internet grows exponentially, and over 80% of this data is un-

structured [177]. By “unstructured,” we refer to data that typically requires human

understanding to make use of. For instance, the written posts published to social

media are full of context, humor, inside jokes, and personal information. Similarly,

the social networks that emerge on these websites represent an online mapping of the

complex, messy, and unpredictable set of human relationships. Human users often

struggle to understand these nuances, and many times the creator’s original intent is

lost in translation when encoded online. How then can we expect a machine to be

able to leverage unstructured data algorithmically?

The modern way to handle unstructured data for the purpose of machine learn-

ing is to first identify an embedding. Embeddings are learned sets of latent variables

that describe the underlying qualities of a dataset that could not be observed directly.

One clear example of a latent feature in the domain of natural language is that of sen-

timent. Natural language’s only observable information is the letters and words that

make up a particular writing sample. However, human readers can often easily intuit

whether the author feels positively or negatively about the discussed subject. This

1

understanding of sentiment emerges from the text, because most authors convey this

sort of emotion through subtle or indirect means. Therefore, a high quality algorith-

mic analysis of sentiment needs to both understand the meaning behind each word,

but also the latent reasons that the observed words were selected and particularly

ordered.

In this thesis we explore latent features of text and graphs, with a focus on

understanding the content present in biomedical scientific literature. This analysis

includes a new proposed bipartite graph embedding (Chapter 3), and technique that

uses graph embeddings as a heuristic for better solving the NP-hard problem of hy-

pergraph partitioning (Chapter 4). Then, we present significant advances in biomed-

ical hypothesis generation, starting with the proposed Moliere system (Chapter 5).

To quantify Moliere system performance and improve system usability, we present

a new large-scale validation technique for hypothesis generation (Chapter 6), and

apply that technique to determine whether full-text papers are worth their associ-

ated computational overhead (Chapter 7). Then, using more modern text and graph

embedding techniques, we present Agatha, a deep-learning approach to hypothesis

generation (Chapter 8). Finally, we propose a new technique for conditional biomedi-

cal abstract generation, which can enable hypothesis generation techniques to output

human-understandable summaries of new findings (Chapter 9).

1.1 Research Objectives

This dissertation explores the following questions pertaining to both text and

graph embeddings:

• Do traditional graph embedding techniques erode key variance of bipartite

graphs? (Chapter 3)

2

• Can the global structural features learned by bipartite graph embedding improve

upon existing node-similarity measures in the problem of multilevel hypergraph

partitioning? (Chapter 4)

• Can text embeddings help identify useful papers related to user-supplied hy-

pothesis generation queries, and can topic modeling provide hypothesis-related

insights to domain scientists? (Chapter 5)

• Can we use text embeddings and topic models to automate the analysis of

generated hypotheses? (Chapter 6)

• Is the content present in scientific abstracts sufficient for hypothesis generation,

or is it worth processing full-text papers? (Chapter 7)

• In what ways can large scale graph embedding and deep learning techniques

improve hypothesis generation? (Chapter 8)

• Can we model scientific language such that we can generate new language dis-

cussing user-defined keywords? (Chapter 9).

1.2 Contributions in Summary

Each of the seven research questions posed above is explored in depth in the

following chapters. We summarize the key findings of each here.

1.2.1 Bipartite Graph Embedding

We present First- and High-Order Bipartite Embeddings (FOBE and HOBE).

These techniques produce embeddings for the nodes of each half of a bipartite graph

such that key variance within each half can be better encoded. This process involves

3

decomposing edges of the original graph into sets of node interactions that occur

within each half. Using these techniques, we demonstrate competitive performance

on the task of link prediction, as well as improved performance for recommendation.

1.2.2 Embedding-based Coarsening for Hypergraph Parti-

tioning

A hypergraph is a generalization of a classical graph wherein “hyperedges” may

contain any subset of nodes. There is a one-to-one relationship between hypergraphs

and bipartite graphs, which allows us to apply bipartite graph embedding techniques

like FOBE and HOBE in a new context. The problem of hypergraph partitioning

is to divide nodes into similarly-sizes subsets in order to minimize the number of

hyperedges that span more than one subset. This problem is NP-Hard, so most

modern solvers use the multilevel algorithm that solves an similarly-structured small

problem who’s solution can be interpolated and refined onto the input hypergraph.

In order to find these sub-problems, solvers iteratively coarsen the input hypergraph

by merging similar nodes and hyperedges. The coarsening process has an outsized

impact on overall solution quality, and is primarily determined by node-similarity

measures. We use bipartite embeddings of the original hypergraph to improve this

node-similarly measure through a process called embedding-based coarsening, which

we implement in two modern partitioners. As a result, we demonstrate an average

improvement of approximately 10% for low partition counts across a large benchmark.

In some cases, this improvement is as significant as 400%.

4

1.2.3 Hypothesis Generation with Moliere

We propose Moliere, an automatic biomedical hypothesis generation system,

which compiles all publicly available biomedical abstracts into a large semantic net-

work. Edges within this network indicate similarity between elements. For instance,

two keywords with similar biomedical text embeddings are more likely to receive a

strongly weighted edge. Using this network we can perform shortest-path queries

between two user-specific elements of interest. The shortest-path identifies a region

within the network that is more likely to contain relevant information. From this

region, we extract a subset of biomedical abstracts on which we perform topic mod-

eling. These topics can be analyzed by biomedical experts to determine the quality

and strength of potential connections bridging the queried entities. Using this sys-

tem trained on historical information, we rediscover a number of more recent new

connections.

1.2.4 Validation of Hypothesis Generation Systems

The originally proposed Moliere analysis of topic models requires significant

human oversight. As a result, the validation of hypothesis generation systems like

Moliere is slow, biased, and does not scale beyond a handful of queries. In fact, no

prior large scale validation of hypothesis generation systems has the necessary speed,

breadth, or scalability needed to evaluate Moliere. To address these concerns, we pro-

pose a new validation technique based on the ranking process performed by scientists

during the drug discovery process. This analysis requires that a system rank a set of

recently published connections with a set of randomly sampled negative connections.

From there, a hypothesis generation system is scored by its ability to rank pub-

lished results above noise. To perform this ranking, however, we propose a number of

5

embedding- and topic-model-based heuristic criteria. We not only demonstrate that

our proposed ranking criteria results in high scores in our proposed benchmark, but

also that these scores can be used in real-world applications to find gene-treatment

targets. Specifically, we identify the inhibition of DDX3 as a likely treatment for

HIV-associated neurodegenerative disease, which is originally discovered by Moliere,

and later confirmed in a laboratory experiment.

1.2.5 Full Text Papers for Hypothesis Generation

Using our validation method, we can ask questions regarding hypothesis gen-

eration system parameters. Specifically, we can retrain various instances of Moliere

and perform our large-scale variation to quantify the differences in performance given

different inputs and hyperparameters. The main question we answer is whether there

is an added benefit to using full-text papers, as opposed to shorter abstract summaries

of the same work. Through our analysis, we demonstrate that full-text papers inside

Moliere can lead to a 10% improvement in quality, but increases runtime by forty-five

times.

1.2.6 Deep Learning Hypothesis Generation with Agatha

In order to address a number of assumptions present in Moliere we present

Agatha, a deep-learning approach to hypothesis generation that begins by construct-

ing and embedding a large semantic graph built around sentences (as opposed to

abstracts). Then, using a transformer encoder model, we learn a ranking criteria for

hypotheses directly from embeddings. Because the Agatha system does not rely on

any heuristically-backed ranking criteria we observe a substantial increase in result

quality when validating on the same hypothesis set as Moliere. Additionally, because

6

we no longer perform expensive shortest-path queries, the Agatha system can process

many hundreds of hypotheses in the same amount of time it takes Moliere to pro-

cess just one. Increased query speed enables new many-to-many queries, which we

evaluate by exploring multiple popular medical sub-domains. We identify that within

particular hypothesis types, such as hypotheses between genes and cell functions, that

Agatha can recommend new research directions with a top-10 precision of over 0.5.

Therefore, the Agatha system is capable of recommending fruitful new research ideas

without explicit input from human scientists.

1.2.7 Conditional Biomedical Language Generation

A key problem with existing hypothesis generation systems is a lack of inter-

pretable output. While numeric scores are valuable for large-scale queries, biomedical

researchers need rich information at the small-scale in order to act on specific auto-

matically generated hypotheses. To begin to address this limitation, we turn to con-

ditional language modeling, a process wherein we can generate new text provided a

user-specified prior. For the purpose of this analysis we use author-supplied metadata

as conditional data for generating the body of biomedical abstracts. However, future

applications could supply any embedding, such as the hidden units of the Agatha

model, to condition text generation. Using this technique we demonstrate an ability

to generate full sensible biomedical texts, recover nontrivial in-domain keywords, and

outperform more general-purpose language models. Additionally, we demonstrate

that the model is very sensitive to the conditioning metadata, which enables useful

controls over generated text.

7

Chapter 2

Background

This chapter presents fundamental prior work needed to understand the con-

tributions in this thesis. Broadly, these topics encompass text embeddings, graph

embeddings, and hypothesis generation. However, specific prior works that apply to

particular chapters appear in those chapters independent background sections.

2.1 Latent Features

In order to understand the intuitions behind text and graph embeddings, one

should first explore more historical instances of latent feature analysis. Latent features

are those that describe the underlying distribution of an observable variable. In the

introduction, we explain that sentiment in the domain of natural language processing

is an easily comprehensible example of a latent feature. Sentiment is considered latent

because the positive or negative view of the author is rarely encoded explicitly, but

rather more subtly alters the choice and order of words. Therefore in this casein this

case the distribution and ordering of words are the observable variable, and sentiment

is the unobservable latent feature.

8

However, latent feature analysis is far more fundamental to the process of

machine learning and data mining than the sentiment example may lead a reader to

believe. For instance, when one applies principal-component analysis (PCA) [250] in

order to visualize a dataset, they are also exploring latent features. In this case, each

of the two or three principal components indicates a direction of maximal variance

of the dataset. While these vectors often do not have as clear of an interpretation as

sentiment does for text, their analysis can lead to useful conclusions about a dataset.

Matrix factorization leads to another form of latent feature analysis. One

famous example is the use of non-negative matrix factorization [134] for the analysis of

human faces [133]. In this case, square grayscale images of faces are decomposed into

latent features through the matrix factorization process. The observable variables,

pixels within each image as represented by a number between zero and one, begin

in a large N by M matrix. Each of N rows represents a different pixel location,

and each of M columns represents a different image of a face. Non-negative matrix

factorization decomposes the large N by M matrix into two smaller-rank matrices of

sizes N by K and K by M . In this manner, we identify K latent features, both in

the domain of pixels (the N ×K matrix), and in the domain of images (the K ×M

matrix). What Lee and Seung find is that the first set of features indicates the

primary components of each face, such as eyes, the node, the mouth, and various

shadows that each could cast on the other. Meanwhile, the second set of features

indicates the makeup of a specific face in terms of the components. These latent facial

features arise from a simple matrix of pixels intuitively, because they help describe

the distribution of lightness values across a grayscale image. Importantly though, the

process of matrix factorization is unaware that it is processing faces. These latent

properties are discovered from the very simple set of grayscale values.

Back in the domain of natural language processing, topic modeling through

9

Figure 2.1: A summary of the LDA topic model.

Latent Dirichlet Allocation (LDA) is a common process to uncover the latent dis-

tribution of topics across a corpus of words. Proposed by Blei [31], and depicted in

Figure 2.1. This model fits a latent distribution of topics over the observed words

per document. Here, the words within each document w is the only variable that

can be directly observed. However, this model assumes that there exist K topics,

each defined as a probability distribution over words, and that each document can

be described as a mixture θ over these topics. In practice, this model learns topic

mixtures that tend to comport with an intuitive clustering of words with respect to

the corpus at hand. One common example is to present the word probabilities of

topics resent in New York Times articles. Unsurprisingly, the high-probability words

in each distribution look surprisingly like the papers subsection titles. In this case, we

can recover the latent distribution of articles, which follow the key topics over which

the New York Times reports, simply by studying word co-occurrence patterns.

A key limitation of LDA, and other similar models, is the reliance on hand-

crafted statistical models to understand an underlying distribution. In the case of

LDA, we have to take for granted that words in our corpus actually do follow a topic

distribution that maps into a Dirichlet distribution for instance. In contrast to these

10

crafted approaches, there are a range of neural network methods for identifying la-

tent features that make fewer assumptions about the underlying distribution of data.

These models instead learn to find sets of latent features given models of many param-

eters, sometimes millions or billions, in any way that best optimizes some objective.

The clearest view into this sort of model is the auto encoder, however one should note

that every neural network model (really, any Bayesian statistical model) includes the

discovery of latent features as one of its most elementary operations.

The auto-encoder is a simple unsupervised neural network architecture wherein

the model must reconstruct its input through a low-rank approximation [146]. A

simple example of this model is defined as followed, and might optimize the following

objective function:

L(x) =
1

n

n∑
i=1

(xi −H(x)i)
2 (2.1)

Here L(x) corresponds to the loss associated with training example x ∈ Rn,

and H represents the parameterized auto encoder. The loss here is mean-squared

error, and while this is a common case, we only present this particular loss for the

purpose of following an easy example. A simple “one-layer” definition of H would be:

H(x) = max(0, xθ)θ′

where θ ∈ Rn×k

and θ′ ∈ Rk×n

(2.2)

Here θ and θ′ are learned parameters that are updated when minimizing L,

often through gradient decent. The first set of parameters projects the input data into

a low-rank approximation, and in doing so must combine various signals present in the

input in order to preserve the overall structure of x. The second set of parameters, θ′,

11

then expands the k-dimensional approximation of x back to the input domain. The

loss is minimized when the difference between the input and recreated version of x is

minimal. Intuitively, therefore, the set of k underlying features that correspond to x

should be the latent variables associated with the distribution of training data.

Using this intuition, one can see how all neural network models perform embed-

dings. For instance, transfer learning relies on this property in image processing [247].

Transfer learning is the process of applying weights that were learned in one context

to a different problem in a similar domain. For instance, one might want to use

weights from a deep-learning model trained to classify images in the popular Ima-

geNet dataset [60] in order to help perform object detection. In practice, one would

construct a model that has the same initial neural-network architecture as the first

layers of a pretrained network, and then has a new special purposed “head” that is

selected to model a new particular task. While the weights in the head are assigned

randomly, the weights in the rest of the model can be copied from the pretrained

model. Then, after freezing the pretrained component, the head can be “fine-tuned”

for the new task, often with increased performance as opposed to training a new

model whole cloth.

The reason transfer learning works is because the pretrained models have

picked up on real-world latent variables associated with the problem at hand. For in-

stance, early layers might quantify broad shapes and colors, while intermediate layers

might represent more fine-grained patterns and shadings. While the interpretation

and analysis of these weights remains an open problem — many ImageNet model con-

tain many millions of parameters — these discovered latent features can be directly

applied to new contexts, especially those with less available data.

While all neural network models identify latent features, there are some that

are specifically designed to find low-rank representations of specific kinds of high-

12

dimensional data. These embedding models typically act as a special pre-processing

phase to begin more domain-specific neural network problems. As the title of this

dissertation suggests, we will focus on embedding techniques associated with text and

graphs.

2.2 Text Embedding

The most straightforward representation of text is colloquially known as the

“one-hot” vector. A each word in a vocabulary of size V is ordered and assigned a

V -dimensional representation. The ith word’s representation consists of a value of

one in the ith position, and zeros elsewhere. Thus, the name “one-hot.” We refer to

this approach as a “representation” (not an embedding) as no latent information is

captured by these vectors. All words are equally dissimilar, and there are no insights

to be gained from studding the V -dimensional space.

While the dimensionality and sparsity of one-hot embeddings are challenges

for many machine learning models, they did facilitate a significant amount of early

text mining [156, 56]. Simple calculations, such as term-frequency inverse-document-

frequency (TF-IDF) [175], expose some nontrivial properties from one-hot embed-

dings, such as the relative importance of words within a corpus. Other early text

representation methods include using hand-crafted features [70], or using hashing to

find lower-rank representations [74]. More recent work uses recurrent neural networks

to identify relational trends within text [154], however more complex models are able

to uncover latent spaces rich with semantic meaning.

Mikolov et al. present two models that set a new baseline for text embeddings

in [153, 155]. Known colloquially as “word2vec,” the Bag-of-Words and hierarchi-

cal Skip-Gram models learn semantic embeddings that transfer across a number of

13

Figure 2.2: Word2vec architectures. Here each W corresponds to weight matrices.
Note that the training and leading context is typically comprised of many words, and
only one is shown above.

machine learning applications. Each method begins by sampling “windows” from a

corpus of text. A window is simply a short string of words centered around a partic-

ular target. Typically a window contains an equal number of “context” words both

leading and following the target. For example, the window “quick brown fox jumped

over” contains the target word “fox,” and two words for both leading and trailing

context. Note that windows can be sampled in parallel, and do not contain additional

information regarding where the sample originated. After sampling, the two models

diverge. We depict a summary of each model architecture in Figure 2.2.

The Bag-of-Words model learns to predict the target word given its context.

Each word is initially represented as a one-hot vector and the corresponding weights of

this model are later interpreted as the resulting embeddings. The Bag-of-Words model

first maps each words from a sample’s context their corresponding embeddings. From

there, it uses the summation of context embeddings as a way to predict the target one-

hot embedding. Error from the prediction back-propagates to the embeddings [94],

which lead to an updated feature space during training. The name “Bag-of-Words”

comes from the summation at the center of this model. By collapsing the context

14

vectors into a single sum, this model discards word-order information found in the

context. However, by only maintain two weight matrices, the one that maps context

to embedding, and the other that maps summation to target, the Bag-of-Words model

is one of the fastest to train.

The Skip-Gram model adds additional weights in order to retain word-order

information. Specifically, this model swaps input and output to instead learn a map-

ping from target word to context. The target one-hot vector is first mapped to an

embedding, which is then transformed to one-hot representations independently for

each word in the context. This means that different weights will learn the relationship

between “fox” to “quick” and “brown,” from the above window. Error originating at

each word in the context is summed during back-propagation in order to update only

the target word’s embedding. This model can learn higher-quality latent features, but

does so at a steeper training cost. Now, instead of two weight matrices, the number of

proportional to the window size. However, due to parallel training and typically small

window sizes, the added complexity does not make the Skip-Gram model infeasible

for real-world applications.

Building off the word2vec models of Mikolov et al., Joulin et al. (with many

of the same authors) leverage character-group embeddings to improve the quality of

textual latent spaces in the “fasttext” model [113, 114, 34]. This model extends Skip-

Gram to include sub-word information. The authors note that long rare words often

share common roots with better-known terms. This word decomposition is referred

to as morphology in linguistics. The intuition is often seen in humans who encounter

unknown words. For instance, when a hypothetical person encounters a new word,

such as “neurodegenerative” (as the fasttext model will later in this thesis), it is

reasonable that a human observer would deconstruct this longer word into known

sub-components: “neuro-de-generat-ive.” She could then reasonably guess that neu-

15

rodegenerative refers to something that lessens the brain, assuming they knew that

“neuro” often related to the brain, “de” negates, “generat” refers to growth, and “ive”

implies that the term is an adjective. While this approximation may not convey the

exact intended meaning, these sub-word approximations filled in a significant amount

of unobserved information. The fasttext model captures this process mathematically.

Each individual word is represented as a “bag of character n-grams” with added spe-

cial symbols (“¡” and “¿”) to denote the start and end of a word. These n-grams are

taken through a sliding window approach, using a range of window sizes. In addition,

the whole term is added to the bag. To recreate the example found in for a sliding

window of size 3 [34]:

where→ (<where>, <wh, whe, her, ere, re>)

Using this decomposition approach, fasttext first embeds each set of characters

and derives word embeddings through the sum of its character embedding. That

summed embedding is then used to predict the remaining context one-hot vectors, in

the same manner found in the Skip-Gram model. Using this sub-word approach, in

addition to implementation details found in [113, 114], the fasttext method achieves

higher quality latent spaces while remaining an efficient tool for embeddings.

One limitation of the above text embedding models is posed by homographs

— words that are spelled the same but have different meanings. In our work on full-

text papers we identified many such words, such as “fig,” which on its own may refer

to a tree, fruit, gene, or “figure.” The above-listed methods each identify a single

vector representation for each observed word, meaning that “fig” would have a single

representation regardless of context. The ELMo (Embedding from Language Models)

model addresses this by adding sequence-based machine learning techniques. The

16

Lost Short Term Memory (LSTM) unit captures recurrent properties of sequences,

and can identify trends in natural language sentences [217]. The hidden state of each

LSTM unit is conditioned both on a current input as well as the previous state of

the unit. As a result, the LSTM model has the ability to distinguish homographs

from context. For instance, the sentences “I ate a fig” and “I sat under the fig”

each contain information prior to the homograph that disambiguates its meaning.

An LSTM model will therefore have different internal state when considering the

homograph during the embedding. The ELMo model specifically uses a bidirectional

approach wherein two LSTM models each consider the sequence starting from the

front and end respectively. Their joint features are then understood by a second

layer of bidirectional LSTMs. Training uses sub-sequence information to predict the

following term. For instance, the forward-facing LSTM will predict the ith word given

words 1, 2, ..., i− 1, and the backward facing LSTM will predict the same word given

i+ 1, i+ 2, ..., n, where n is the length of the sentence.

2.2.1 The Transformer

Modern advances in deep-learning architectures has enabled a new wave of

text embedding models. The Transformer [236], a sequence-to-sequence model built

through multi-headed attention layers, has been customized for a number of NLP

tasks, as best demonstrated by BERT [63], GPT-2 [173], and a range of notable follow-

ups [174, 216, 147]. Conceptually, the attention mechanism works by learning multiple

weighted averages per-element of the input sequence. Specifically, this includes three

projections of each element’s embedding, represented as packed matrices: Q, K, and

V . Each projection functions differently, with Q acting as a “query” that is compared

against “keys” K and “values” V . The specific mechanism is defined as follows, with

17

dk representing the dimensionality of each Q and K embedding:

Attention(Q,K, V) = softmax

(
QKᵀ

√
dk

)
V (2.3)

The “multi-headed” aspect of the transformer indicates that the self-attention

mechanism is applied multiple times per-layer, per-element of the sequence. These

multiple heads are then recombined through a feed-forward layer:

MultiHead(X, Y) = [h1; . . . ;hk]W
(4)

where hi = Attention
(
XW

(1)
i , Y W

(2)
i , Y W

(3)
i

) (2.4)

The transformer model presented by Vaswani et al. [236] use the attention

attention mechanism in three different ways. Within the encoder stack, which pro-

cesses the input sequence in their proposed sequence-to-sequence model, the K, Q,

and V embeddings all come from the same sequence of tokens. This is referred to all

“self attention.” In the decoder stack, the part of the model that uses the encoder

output to generate a new sequence, these embedding matrices are masked during the

attention function such that the output embedding for position i can only depend on

prior elements. This is called “masked self attention”. Following this operation, each

decoder embedding is attended with all of the encoder embeddings. Specifically, Q

values are derived from the decoder, while K and V values depend on the encoder. We

refer to this operation as “Encoder-Decoder Attention.” Note that BERT [240] uses

only the encoder self-attention layers, while GPT-2 [173] uses the decoder’s masked

self-attention layers. The work presented here uses all three.

The multi-head components are combined with a feed-forward operation, de-

noted FF, that projects the concatenated embedding into a larger dimensionality,

applies the ReLU activation function, and then reduces back to the set embedding

18

rank:

FF(X) = max(0, XW)W ′ (2.5)

Then, combined with a learned layer-wise normalization, these components

combine to form encoder and decoder blocks. Omitting the standard dropout between

each operation, the encoder block is defined as:

E(X) = LayerNorm(FF(α) + α)

α = LayerNorm(MultiHead(X,X) +X)

(2.6)

while the decoder block is defined as:

D(X, Y) = LayerNorm(FF(α) + α)

α = LayerNorm(MultiHead(β, Y) + β)

β = LayerNorm(MultiHead(X,X) +X)

(2.7)

We depict the transformer architecture in Figure 2.3.

Tokenization chunks an input sequence of characters into input for a transformer-

based model. BERT leverages the WordPiece algorithm [252], which first learns to

identify a predetermined number of character-groups from a sample of text in order

to minimize the expected number of character groups per sentence. The fact that

practitioners can tune the number of tokens in a WordPiece tokenization of critical

for lowering the overall vocabulary words, and ultimately the size of the model. This

approach also allows the model to more easily adapt to out-of-vocabulary words, as

infrequent words can simply be constructed by assembling smaller word-chunks (often

the chunks containing a single character) [191]. While the WordPiece algorithm itself

is proprietary, SentencePiece is an official open-source implementation.

Many groups have worked to endow transformer-based language models with

19

Figure 2.3: The Transformer Architecture. Note that BERT uses only the encoder
half, while GPT-2 uses only the decoder half.

domain-based information. In the field of scientific language, two major models have

been proposed: SciBERT from AllenNLP [22], and BioBERT from Korea Univer-

sity in Seoul [135]. SciBERT is trained on over one-million papers from Semantic-

Scholar.org, and constructed to completed named entity recognition, PICO Extrac-

tion, Text Classification, Relation Classification, and Dependency Parsing. For each

of these tasks, training data is provided by relatively small human annotated datasets.

Improved performance comes from initial pretraining done on the base of the model,

in the same manner as was performed for the original BERT. From there, the base

model can be used to instantiate fine-tuned version of SciBERT, each with differ-

ent “task-heads,” which learn to associate the fundamental semantic content of the

base SciBERT model with the particular task at hand. BioBERT performs a similar

procedure, focusing on texts available from Medline and PubMedCentral, as well as

English Wikipedia and the Books Corpus. Then, after being pretrained on all four

20

datasets, BioBERT fine-tunes for named entity recognition, relation extraction, and

question answering. Again, the datasets used for fine-tuning are significantly smaller

than the datasets used for the BioBERT pretraining phase. In both cases, SciBERT

and BioBERT demonstrate superior performance in their respective tasks.

2.3 Graph Embedding

Inspired by the Skip-Gram method for embedding text, Perozzi et al. demon-

strate that for a similar method can capture latent structural features of traditional

graphs [168]. Their approach, Deepwalk, reduces the graph problem into a text

problem by performing a large number of random walks. Each walk produces a se-

quence of nodes forming a “sentence,” which they then input to a similar Skip-Gram

model [157]. This model learns to predict a target node given its sampled context

within an individual walk.

An alternative approach, LINE by Tang et al., models first- and second-order

node relationships directly [228]. This process samples from the local neighborhoods

of each node explicitly, and learns an embedding such that the dot product of embed-

dings correlates with the observed similarities. The bipartite embedding method we

present in Chapter 3 is most directly similar to LINE. This model optimizes to reduce

the KL-divergence between the set of node samples and the estimated probabilities

calculated through embeddings.

Grover et al. observe that Deepwalk and LINE each capture a different set

of latent features [88]. The depth-first random walks performed in Deepwalk capture

homophilic equivalences, while LINE’s breadth-first similarities capture structural

equivalences. Homophily describes the tendency for similar nodes to be densely con-

nected [77], while structural similarity descries the roles played by nodes that may

21

be in desperate regions of a network. This is best described in a corporate social net-

work. Two members of the same project group share homophilic similarity — they

are likely both connected to each other member of their group, and all work toward

a common task. Meanwhile, team leaders across the company each share structural

similarities. The team leaders may not be directly connected, and may work on very

different projects, but they are all identified by their managerial relationship bridging

the rest of the group to upper management.

Grover et al. propose the “node2vec” model, which learns both homophilic

and structural similarities to form a richer latent space [88]. This model uses a biased

random walk that has tunable parameters corresponding to the return- and out-step

weights during each sample. Formally, if the model begins a walk at node n1 it takes

its first step through a uniform random sample of n1’s neighborhood to neighbor n2.

From there, the algorithm selects n3 by a weighted random sample. Node2vec assigns

a return weight of 1/p to n1. It assigns an in-step weight 1 to all neighbors of n2

that are also neighbors of n1 (Γ(n1) ∩ Γ(n2)). It assigns an out-step weight of 1/q

to the remaining unweighted neighbors. Using this method, one may tune node2vec

by selecting values of p and q that prioritize structural and homophilic similarities

accordingly. Upon collecting random walks, this approach learns embeddings through

the same Skip-Gram model used by Perozzi et al. [168].

Many additional embedding methods tailor to specific graph subclasses. One

of particular interest is the heterogeneous information network (HIN) [199]. A HIN

is a generalization to the traditional graph wherein each node is assigned a type. For

instance, a citation network may consists of types: author, paper, and venue. Each

HIN also has a corresponding schema that describes the connection patterns between

types. The citation network contains links between authors and papers (authorship)

and between papers and venues (publishing). The resulting schema, therefore, would

22

be the line graph: author – paper – venue. A metapath is a path template described

as a walk through the schema. For instance, co-authorship is defined as the metapath:

author – paper – author. Metapath2Vec++, presented by Dong et al., learns to embed

a HIN given a predefined set of metapaths [66]. Sampled walks are restricted to only

metapath descriptions, but are sampled similarly to Deepwalk. These samples are

fed into a modified Skip-Gram that incorporates type information by using different

weight matrices for each node type.

Further tailored embedding methods are described in Chapter 3, which outlines

our proposed bipartite graph embedding.

2.4 Automatic Hypothesis Generation

A significant portion of this thesis centers around the application of biomedical

automatic hypothesis generation. Sometimes called literate-based discovery, this pro-

cess consists of collecting scientific knowledge, typically encoded as research papers

or summaries, and using that information to predict upcoming novel and fruitful re-

search directions. We focus our analysis in the domain of biomedical literature due to

the vast quantity of publicly available datasets, such as the MEDLINE database [162]

provided by the US National Library of Medicine (NLM). This single database con-

tains nearly 30-million citations at the time of writing, has approximately 1-million

citations added yearly, and this rate is increasing [1].

Within this large collection of publicly available research exist undiscovered

public knowledge, as Swanson described in [221]. Put simply, imagine two research

labs are working on related information, one establishing an A−B connection and the

other establishing a B − C connection. When both teams publish their findings, the

dataset of known entity relationships will contain the implicit A−B−C connection,

23

but until that information is presented to a human actor, we cannot make use of this

information. Here, automatic hypothesis generation systems aim to discover these

implicit connections in order to provide useful information to domain researchers.

The ABC pattern of automated discovery begins in earnest with Swanson’s

ARROWSMITH system [219]. By running database queries for titles similar to key-

words of interest, this 1986 system identified lists of relevant terms for both user-

supplied keywords A and C. From there, the overlap of lists forms the candidate B

set. This simple paradigm established real-world medical discoveries, including the

connection between fish oil and blood viscosity [219], migraines and magnesium [220],

and around a dozen similar findings.

While there have been many contemporary hypothesis generation systems

since ARROWSMITH, and in the following chapters we detail many of them, there are

a number of overarching strategies worth summarizing here. The first, as seen by AR-

ROWSMITH, is keyword retrieval. The second, popularized by Spanger’s work [208],

is to produce recommendations through co-occurrence matrices. His described sys-

tem, implemented in IBM’s Watson for Drug Discovery [18], creates a large term-

document matrix related to a particular set of user-supplied interests. From there,

Watson perform matrix decomposition in a way similar to the non-negative matrix

factorization example from Section 2.1. This technique allows their proposed system

to perform recommendation by comparing similarities of elements in the low-rank

latent space. What makes the Spanger approach different from other co-occurrence

methods is their heavy use of visualizations. In [208], Spanger depicts a range of

hierarchies and graphs that a biomedical researcher could explore in order to come

to their own conclusions about the queried objects of interest.

A key limitation of many hypothesis generation systems we explore later, in-

cluding ARROWSMITH and Watson, is a reliance on human interpretation of results

24

in order to evaluate the plausibility of a single hypothesis. One strategy for hypothe-

sis generation that can overcome this issue is link prediction. Many groups maintain

biomedical graphs, where nodes correspond to medical entities and edges correspond

to known relationships of correlations, such as OMIM [80] and GWAS [21]. Using

these networks, link-prediction methods such as DiseaseConnect [145] can identify

missing connections through a range of graph analysis techniques in order to es-

timate the likelihood of a new result. This class of methods slightly removes the

human from the query loop because the plausibility of a new connection requires sig-

nificantly less analysis, when compared to that of studying visualizations. However,

the breadth of information contained in these graphs is typically limited to a specific

type of relationship, such as that between genes and diseases. Therefore, while the

link-prediction strategy overcomes some limitations of the keyword retrieval and the

visualization approaches, it imposes a new limitation on scope.

Across the above strategies, the field of hypothesis generation is also restricted

on validation strategies [41]. As opposed to other data mining tasks, hypothesis

generation seeks to uncover novel information that is unknown to everyone, including

those who are designing hypothesis generation systems. Therefore, it is particularly

challenging to validate an up-to-date system that proposes an unexpected connection

between two elements. In order to determine whether or not the hypothesis generation

system is performing correctly, the obvious test is to perform laboratory experiments.

However, this process is time consuming and expensive. The second-best test is often

historical analysis. However, many systems require expert input, or are limited to

small domains when performing historical tests. Both limiting factors cause problems

for broad and large-scale testing.

Given that the amount of published information continues to accelerate each

yet, it is likely that these implicit findings are more plentiful, useful, and hard to find.

25

As a result, we propose a number of advances, beyond the limited “ABC” model [4],

to create more sophisticated hypothesis generation systems. In the latter chapters

of this dissertation we explore new hypothesis generation systems that extend the

ABC model. We also propose new ways to quantify hypothesis plausibility that does

not rely on expert input, and ways to perform historical validation that overcome

previous limitations.

26

Chapter 3

FOBE and HOBE: First- and

High-Order Bipartite Embeddings

Abstract

Typical graph embeddings may not capture type-specific bipartite graph fea-

tures that arise in such areas as recommender systems, data visualization, and drug

discovery. Machine learning methods utilized in these applications would be better

served with specialized embedding techniques. We propose two embeddings for bi-

partite graphs that decompose edges into sets of indirect relationships between node

neighborhoods. When sampling higher-order relationships, we reinforce similarities

through algebraic distance on graphs. We also introduce ensemble embeddings to

combine both into a “best of both worlds” embedding. The proposed methods are

evaluated on link prediction and recommendation tasks and compared with other

state-of-the-art embeddings. Our embeddings are found to perform better on recom-

mendation tasks and equally competitive in link prediction. Although all considered

embeddings are beneficial in particular applications, we demonstrate that none of

27

those considered is clearly superior (in contrast to what is claimed in many papers).

Therefore, we discuss the trade offs among them, noting that the methods proposed

here are robust for applications relying on same-typed comparisons.

Reproducibility: Our code, data sets, and results are all publicly available online

at: https://sybrandt.com/2019/fobe_hobe.

3.1 Background and Motivation

Graph embedding methods place nodes into a continuous vector space in order

to capture structural properties that enable machine learning tasks [83]. While many

have made significant progress embedding general graphs [168, 228, 88, 232], we find

that bipartite graphs have received less study [79], and that the field is far from

settled on this interesting case. There exist a variety of special algorithmic cases

for bipartite graphs, which are utilized in applications such as user-product or user-

group recommender systems [258], hypergraph based load balancing and mapping

[161], gene-disease relationships [19], and drug-to-drug targets [254], to mention just

a few.

We define a simple, undirected, and unweighted bipartite graph to be G =

(V,E) where V = {v1, v2, . . . , vn+m} is composed of the disjoint subsetsA = {α1, . . . , αn}

and B = {β1, . . . , βn} (V = A ∪ B). Here, A and B represent the two halves of the

network, and are sometimes called “types.” We use vi to indicate any node in V , αi for

nodes in A, and βi for those in B. In a bipartite graph, edges only occur across types,

and E ⊆ {A× B} indicates those connections within G. A single edge is notated as

αiβj ∈ E, and because our graph is undirected, αiβj = βjαi. The neighborhood of

a node is indicated by the function Γ(·). If αi ∈ A then Γ(αi) = {βj|αiβj ∈ E}, and

vice-versa for nodes in B. In order to sample an element from a set, such as selecting

28

https://sybrandt.com/2019/fobe_hobe

a random αi from A with uniform probability, we notate αi∼A. The problem of graph

embedding is to determine a representation of the nodes in G in a vector space of

r dimensions such that r << |V | and that a select node-similarity measure defined

on V is encoded by these vectors [232]. We notate this embedding as the function

ε(·) : V → Rr, that maps each node to an embedding.

We propose two methods for embedding bipartite graphs. These methods fit

embeddings by optimizing nodes of each type separately, which we find can lead to

higher quality type-specific latent features. Our first method, First-Order Bipartite

Embedding (FOBE), samples for the existence of direct, and first-order similarities

within the bipartite structure. This approach maintains the separation of types by

reformulating edges in E into indirect same-typed observations. For instance, the

connection αiβj ∈ E decomposes into a set of observed pairs (αi, αk∼Γ(βj)) and

(βj, βk∼Γ(αi)).

Our second method, High-Order Bipartite Embedding (HOBE), samples di-

rect, first-, and second-order relationships, and weighs samples using algebraic dis-

tance on bipartite graphs [50]. Again, we represent sampled relationships between

nodes of different types by decomposing them into collections of same-typed relation-

ships. While this sampling approach is similar to FOBE, algebraic distance allows

us to improve embedding quality by accounting for broader graph-wide trends. Alge-

braic distance on bipartite graphs has the effect of capturing strong local similarities

between nodes, and reduces the effect of less meaningful relationships. This behavior

is beneficial in many applications, such as shopping, where two users are likely more

similar if they both purchase a niche hobby product, and may not be similar even if

they both purchase a generic cleaning product.

Because FOBE and HOBE each make different prior assumptions about the

relevance of bipartite relationships, we propose a method for combining bipartite em-

29

beddings to get “best of both worlds” performance. This ensemble approach learns a

joint representation from multiple pre-trained embeddings. The “direct” combination

method fits a non-linear transformation of the original embeddings into a fixed-size

hidden layer in accordance to sampled similarities. The “auto-regularized” combi-

nation extends the direct method by introducing a denoising-autoencoder layer in

order to regulate the learned joint embedding [238]. The architecture of both ap-

proaches maintains a separation between nodes of different types, which allows for

type-specific embeddings, without the constraint of a shared global structure. Eval-

uation of all proposed embeddings is performed on link prediction reinforced with

holdout experiments and recommender system tasks.

Our contribution in summary: (1) We introduce First- and High-Order Bipartite

Embeddings that learn representations of bipartite structure that retaining type-

specific semantic information. (2) We present the direct and the auto-regularized

methods to leverage multiple pre-trained graph embeddings to produce a “best of

both words” embedding. (3) We discuss the strengths and weaknesses of our proposed

methods as they compare to a range of graph embedding techniques. We identify

certain graph properties that suit different graph types, and report that none of

the proposed embeddings is clearly superior. However, we find that applications

wanting to make many same-typed comparisons are often best suited by a type-

sensitive embedding.

3.1.1 Related Work

Low-rank embeddings project high-order data into a compressed real-valued

space, often for the purpose of facilitating machine learning models. Inspired by

the Skip-Gram approach[153], Perozzi et al. demonstrate that for a similar method

30

can capture latent structural features of traditional graphs [168]. An alternative

approach, LINE by Tang et al., models first- and second-order node relationships

explicitly [228]. Node2Vec blends the intuitions behind both LINE and Deepwalk by

combining homophilic and structural similarities through a biased random walk [88].

Our proposed methods are certainly influenced by LINE’s approach, but differ in a few

key areas. Firstly, we split our model in order to only make same-typed comparisons.

Furthermore, we introduce terms that compare nodes with relevant negihborhoods,

and can weigh different samples with algebraic distance [50].

While the three previously listed embedding approaches are designed for tra-

ditional graphs, Metapath2Vec++ by Dong et al. presents a heterogeneous approach

using extended type-sensitive skip-gram model [66]. Our method differs from Dong

et al.’s in a number of ways. Again, we do not apply random walks or the skip-gram

model. Furthermore, the Metapath2Vec++ model implicitly asserts that output type-

specific embeddings be a linear combination of the same hidden layer. In contrast, we

create entirely separate embedding spaces for the nodes of different types. BiNE by

Gao et al. focuses directly on the bipartite case [79]. This approach uses the biased

random-walks described in Node2Vec, and samples these walks in proportion to each

node’s HITS centrality [123]. While our methods differ, again, in the use of skip-gram,

BiNE also fundamentally differs from our proposed approaches by enforcing global

structure through cross-type similarities. Tsitsulin et al. present VERSE, a versatile

graph embedding method that allows multiple different node-similarity measures to

be captured by the same overarching embedding technique [232]. This method re-

quires that the user specify a node-similarity measure that will be encoded in the dot

product of resulting embeddings. A key difference between the methods presented

here, and the methods presented in VERSE, come from differences in objective values

when training embeddings. VERSE uses a range of methods to sample node-pairs,

31

from direct sampling to Noise Contrastive Estimation [89], and updates embeddings

according to their observed similarity or dissimilarity (in the case of negative sam-

ples). However, the optimization method proposed here enforces only same-typed

comparisons.

3.2 Methods and Technical Solutions

We present two sibling strategies for learning bipartite embeddings. First-

Order Bipartite Embedding (FOBE) samples direct links from E and first-order re-

lationships between nodes sharing common neighbors. We then fit embeddings to

minimize the KL-Divergence between our observations and our embedding-based es-

timations. The second method, High-Order Bipartite Embedding (HOBE), begins by

computing algebraic similarity estimates for each edge [50, 195]. Using these heuris-

tic weights, HOBE samples direct, first- and second-order relationships, to which we

fit embeddings using mean-squared error. We implement both methods in Python

using Keras [53] and Tensorflow [8].

At a high level, both embedding methods begin by observing structural re-

lationships within a graph G and then fitting an embedding ε in order to encode

structural features via dot product of embeddings. We combine three types of obser-

vations for a single graph These observations are represented through the functions

SA(·, ·), SB(·, ·), and SV (·, ·). Each function maps two nodes to an observed similar-

ity: V × V → R. The result of SA is nonzero only if both arguments are in A, SB is

similarly nonzero only if both arguments are in B. In this manner, these functions

capture type-specific similarities. The SV function, in contrast, captures cross-typed

observations, and is nonzero if its arguments are of different types. We define a recip-

rocal set of functions to model these similarities: S̃A(·, ·), S̃B(·, ·), and S̃V (·, ·). These

32

functions are defined in terms of ε(·), and each method must select some embedding

such that the difference between each corresponding set of S, S̃ pairs. However, the

specifics of each observation, estimation, and objective differs across methods.

Because we estimate similarities within type-specific subsets of ε separately, we

can better preserve typed latent features. This is important for many applications.

Consider an embedding of the bipartite graph of viewers and movies, often used

for applications such as video recommendations. Within “movie space” one would

expect to uncover latent features such as genre, budget, or the presence of high-profile

actors. These features are undefined within “viewer space,” wherein one would expect

to observe latent features corresponding to demographics and viewing preferences.

Clearly these two spaces are correlated in a number of ways, such as the alignment

between viewer tastes and movie genres. However, we find methods that enforce

direct comparisons between viewer and movie embeddings can result in an erosion of

type-specific features, which can lead to lower downstream performance. In contrast,

the methods proposed here never make a direct assertion of cross-type similarity, and

allow implicit relationships to govern any key correlations across spaces.

3.2.1 First-Order Bipartite Embedding

The goal of FOBE is to model direct and first-order relationships from the

original structure. This very simple method only detects the existence of a relation-

ship between two nodes, and therefore does not distinguish between two nodes that

share only one neighbor from two nodes that share many. However, we find that this

simplicity enables scalability at little cost to quality. Here, a direct relationship is

any edge from the original bipartite graph, while a first-order relationship is defined

as {(αi, αj) | Γ(αi) ∩ Γ(αj) 6= ∅}. Note that nodes in a first-order relationship share

33

the same type. We define observations corresponding with each relationship. Direct

observations simply detect the presence of an edge, while first-order relationships

similarly detect a common neighbor. Formally:

SA(αi, αj) =

1 αi, αj ∈ A & Γ(αi) ∩ Γ(αj) 6= ∅

0 otherwise

(3.1)

SB(βi, βj) =

1 βi, βj ∈ B & Γ(βi) ∩ Γ(βj) 6= ∅

0 otherwise

(3.2)

SV (αi, βj) =

1 αiβj ∈ E

0 otherwise

(3.3)

By sampling γ neighbors, we allow our later embedding model to approximate

the effects of Γ, similar to the k-ary set sampling in [160]. Note also that each sample

contains one nonzero S value. By fitting all three observations simultaneously, we

implicitly generate two negative samples for each positive sample. Furthermore, we

generate a fixed number of samples for each node’s direct and first-order relationships.

Given these observations SA, SB, and SV , we fit the ε embedding according to

corresponding estimation functions S̃A, S̃B, S̃V . To estimate a first-order relationship

(S̃A and S̃B) we calculate the sigmoid of the dot product of embeddings (3.5), namely,

σ(x) =
1

1 + e−x
. (3.4)

S̃A(αi, αj) = σ (ε(αi)
ᵀε(αj)) (3.5)

34

S̃B(βi, βj) = σ (ε(βi)
ᵀε(βj)) (3.6)

Building from this, we train embeddings based on direct relationships by com-

posing relevant first-order relationships. Specifically, if αiβj ∈ E then we would expect

αi to be similar to αk ∈ Γ(βj) and vice-versa. Intuitively, a viewer has a higher chance

of watching a movie if they are similar to others that have. We formulate our direct

relationship estimate to be the product of each node’s average first-order estimate to

the other’s neighborhood. Formally:

S̃V (αi, βj) = E
αk∈Γ(βj)

[
S̃A(αi, αk)

]
E

βk∈Γ(αi)

[
S̃B(βj, βk)

]
(3.7)

In order to train our embedding function ε for the FOBE method, we mini-

mize the KL-Divergence [128] between our observed similarities S and our estimated

similarities S̃. We minimize for each simultaneously, for both direct and first-order

similarities, using the Adagrad optimizer [68], namely, we solve:

min
ε

∑
vi,vj∈V×V

S̃A(vi, vj) log

(
SA(vi, vj)

S̃A(vi, vj)

)

+S̃B(vi, vj) log

(
SB(vi, vj)

S̃B(vi, vj)

)

+S̃V (vi, vj) log

(
SV (vi, vj)

S̃V (vi, vj)

)

(3.8)

3.2.2 High-Order Bipartite Embedding

The goal of HOBE is to capture distant relationships between nodes that are

related, but may not share an edge or a neighborhood. In order to differentiate the

meaningful distant connections from those that are spurious, we turn to algebraic

35

distance on graphs [195]. This method is fast to calculate and provides a strong

signal for local similarity. For example, algebraic distance can tell us which neighbor

of a high-degree node is the most similar to the root. As a result, we can utilize this

signal to estimate which multi-hop connections are the most important to preserve

in our embedding.

Algebraic distance is a measure of dependence between variables popularized

in algebraic multigrid (AMG) [179, 40, 149]. Later, it has been shown to be a reliable

and fast way to capture implicit similarities between nodes in graphs [111, 141] and

hypergraphs that are represented as bipartite graphs [195] (which is leveraged in

this work) taking into account distant neighborhoods. Technically, it is a process of

relaxing randomly initialized test vectors using stationary iterative relaxation applied

on graph Laplacian homogeneous system of equations, where in the end the algebraic

distance between system’s variables xi and xj (that correspond to linear system’s rows

i and j) is defined as an maximum absolute value between the ith and jth components

of the test vectors (or, depending on application, as sum or sum of squares of them).

In our context, a variable is a node, and we apply K iterations of Jacobi

over-relaxation (JOR) on the bipartite graph Laplacian as in [179] (K = 20 typically

ensures good stabilization as we do not need full convergence, see Theorem 4.2 [50]).

Initially, each node’s coordinate is assigned a random value, but on each iteration

a node’s coordinate is updated to move it closer its neighbors’ average. Weights

corresponding to each neighbor are inversely proportional their degree in order to

increase the “pull” of small communities. Intuitively, this acknowledges that two

viewers who both watch a niche new-wave movie are more likely similar than two

viewers who watched a popular blockbuster. We run JOR on R independent trials

(called test vectors in AMG works, convergence proven in [50]). Formally, for rth test

vector ar the update step of JOR is performed as follows, where a
(t)
r (vi) represents

36

node vi’s algebraic coordinate on iteration t ∈ {1, .., K}, and λ is a damping factor

(suggested λ = 0.5 in [195]).

a(t+1)
r (vi) = λa(t)

r (vi) + (1− λ)

∑
vj∈Γ(vi)

a
(t)
r (vj)|Γ(vj)|−1∑

vj∈Γ(vi)
|Γ(vj)|−1

(3.9)

We use the l2-norm in order to summarize the algebraic distance of two nodes

across R trails with different random initializations. As a result, two nodes will be

close in our distance calculation if they remain nearby across many trials, which

lessens the effect of too slow convergence in a single trial. For our purposes we select

R = 10. Additionally, we define “algebraic similarity”, s(i, j), as a closeness across

trials. We subtract the distance between two embeddings from the maximum distance

in our space, and rescale the result to the unit interval. Because we know that the

maximum distance between any two coordinates in the same trial is 1, we can compute

this in constant time:

d(vi, vj) =

√√√√ R∑
r=1

(
a

(K)
r (vi)− a

(K)
r (vj)

)2

(3.10)

s(vi, vj) =

√
R− d(vi, vj)√

R
(3.11)

After calculating algebraic similarities for pairs of nodes of all edges, we begin

to sample direct, first-order, and second-order similarities from the bipartite structure.

Here, a second-order connection is one wherein αi and βj share a neighbor that shares

a neighbor: αi ∈ Γ(Γ(Γ(βj))). Note that the set of second-order relationships is a

superset of the direct relationships. We can extend to these higher-order connections

with HOBE, as opposed to FOBE, because of the information provided in algebraic

distances. Many graphs contain a small number of high degree nodes, which creates a

37

very dense second-order graph. Algebraic distances are therefore needed to distinguish

which of the sampled second-order connections are meaningful, especially when the

refinement is normalized by |Γ(vi)|−1.

We formulate our first-order observations to be equal to the strongest shared

bridge between two nodes. This indicates that both nodes are closely related to

something that is mutually representative, such as two viewers that watch new-wave

cinema. Formally:

S′

A(αi, αj) =

max
βk∈Γ(αi)∩Γ(αj)

min (s(αi, βk), s(αj, βk))

if αi, αj ∈ A

0 otherwise

(3.12)

S′

B(βi, βj) =

max
αk∈Γ(βi)∩Γ(βj)

min (s(αk, βi), s(αk, βj))

if βi, βj ∈ B

0 otherwise

(3.13)

When observing second-order relationships between nodes αi and βj if differ-

ent types, we again construct a measurement from shared first-order relationships.

Specifically, we are looking for the strongest first-order connection between i and j’s

neighborhood, and vice-versa. In the context of viewers and movies this represents

the similarity between a viewer and a movie watched by a friend. Formally:

S′

V (αi, βj) = max

 max
αk∈Γ(βj)

S′

A(αi, αk),

max
βk∈Γ(αi)

S′

B(βj, βk)

 (3.14)

We again collect a fixed number of samples for each relationship type: direct,

38

first- and second-order. We then train embeddings using cosine similarities, however

we select the ReLU activation function to replace sigmoid in order to capture the

weighted relationships. We optimize for all three observations simultaneously, which

again has the effect of creating negative samples for non-observed phenomena. Our

estimated similarities are defined as follows:

S̃′

A(αi, αj) = max (0, ε(αi)
ᵀε(αj)) (3.15)

S̃′

B(βi, βj) = max (0, ε(βi)
ᵀε(βj)) (3.16)

S̃′

B(αi, βj) = E
αk∈Γ(βj)

[
S̃′

A(αi, αk)
]

E
βk∈Γ(αi)

[
S̃′

B(βj, βk)
]

(3.17)

We use the same model as FOBE to train HOBE, but with our new estimation

functions and a new objective. We now optimize for the mean-squared error between

our observed and estimated samples, as KL-Divergence is ill-defined for the weighted

samples we collect. Formally, we minimize:

min
ε

E
vi,vj∈V×V

(S′

A(vi, vj)− S̃′

A(vi, vj))
2

+(S′

B(vi, vj)− S̃′

B(vi, vj))
2

+(S′

V (vi, vj)− S̃′

V (vi, vj))
2

 (3.18)

3.2.3 Combination Bipartite Embedding

In order to unify our proposed approaches, we present a method to create a

joint embedding from multiple pre-trained bipartite embeddings. This combination

method maintains our initial assertion that nodes of different types ought to partic-

39

Figure 3.1: Combination Neural Network Models. Boxes correspond to dense
neural network layers, each depicts its activation function. Grey layers only used for
the auto-regularized case.

ipate in different global embedding structures. We fit a non-linear projection of the

input embeddings such that an intermediate embedding can accurately uncover direct

relationships. This raises a question as to whether it is better to create an interme-

diate that succeeds in this training task, or whether it is better to fully encode the

input embeddings. To address this concern we propose two flavors of our combination

method: the “direct” approach maximizes performance on the training task, while

the “auto-regularized” approach enforces a full encoding of input embeddings. The

models used to generate these embeddings is summarized in Figure 3.1.

We begin by taking the edge list of the original bipartite graph E as our set of

positive samples. We then generate five negative samples for each node by selecting

random pairs αiβj /∈ E. For each sample, we create an input vector by concatenating

each of the e′ pre-trained embeddings.

In(vi) = [ε1(vi) ε2(vi) ... εe′(vi)] (3.19)

40

After generating In(αi) and In(βj), our models assert 50% dropout in these

input vectors [212]. We do so in the auto-regularized case so that we follow the

pattern of denoising auto-encoders, which have shown high performance in robust

dimensionality reductions [238]. However, we also find that this dropout increases

performance in the direct combination model as well. This is because in either case,

we anticipate both redundant and noisy signals to be present across the concatenated

embeddings. This is especially necessary for larger values of k and e′, where the risk

of overfitting increases.

We then project In(αi) and In(βj) separately onto two hidden layers of size

d(In)+k
′
/2 where d(·) indicates the dimensionality of the input, and k

′
represents the

desired dimensionality of the combined embeddings. By separating these hidden

layers, we only allow signals from within embeddings of the same node to affect its

combination. We then project down to two combination embeddings of size k
′
, which

act as input to both the joint link-prediction model, as well as to the optional auto-

encoder layers.

In the direct case, we simply minimize the mean-squared error between the pre-

dicted links and the observed links. Formally, let S′′
(αi, βj)→ {0, 1} equal the sam-

pled value, and let S̃′′
(αi, βj)→ R be combination estimate. In the auto-regularized

case we introduce a factor to enforce that the original (pre-dropout) embeddings can

be recovered from the combined embedding. We weight these factors so they are half

as important as performing the link prediction training task. The neural architecture

used to learn these combination embeddings is depicted in the supplemental infor-

mation. If Θ is the set of free parameters of our neural network model, N is the set

of negative samples, and Out(vi) is the output of the auto-encoder corresponding to

41

In(vi), then we optimize the following (direct followed by auto-regularized):

min
Θ

E
αi,βj∈(E+N)

(
S′′

(αi, βj)− S̃′′
(αi, βj)

)2

(3.20)

min
Θ

E
αi,βj∈(E+N)

4
(
S′′

(αi, βj)− S̃′′
(αi, βj)

)2

+||In(αi)−Out(αi)||2

+||In(βj)−Out(βj)||2

 (3.21)

3.3 Algorithmic Analysis

In order to efficiently compute FOBE and HOBE, we collect a fixed number

of samples per node for each of the observation functions, S. As later explored in

Table 3.5, we find that the performance of our proposed methods does not significantly

increase beyond a relatively small, fixed sampling rate sr, where sr << |V |. Using

this observation, we can efficiently minimize the FOBE and HOBE objective values

by approximating the expensive O(n2) set of comparisons (vi, vj ∈ V × V) with a

linear number of samples (specifically O(|V |sr)). Furthermore, we can estimate the

effect of each node’s neighborhood in observations SV and S′V by following a similar

approach. Instead of considering each node’s total O(V)-sized neighborhood, we can

randomly sample sγ neighboring nodes with replacement. These specifically samples

nodes are recorded during the sampling procedure so that they may be referenced

during training. Algorithm 1 describes the sampling algorithm formally.

42

Procedure 1 Sampling for FOBE and HOBE. Note that when a single sample is
recorded, unobserved values are recorded as either zero or empty.

1: function SameTypeSample(vi, sr,S)
2: vj∼Γ(Γ(vi))
3: Record vi,vj, and S(vi, vj)

4: function DiffTypeSample(vi, sr, sγ, G,S)
5: vj∼G(vi)
6: Let γα and γβ be sets of size sγ sampled with replacement from the neighbor-

hoods Γ(vi) and Γ(vj) according to the types of vi and vj.
7: Record vi, vj, γα, γβ, and S(vi, vj).

8: function FobeSampling(G, sr, sγ)
9: for all vi ∈ V do

10: for sr samples do
11: SameTypeSample(vi, sr,SA)
12: SameTypeSample(vi, sr,SB)
13: DiffTypeSample(vi, sr, sγ,Γ(·), SV)

14: function HobeSampling(G, sr, sγ)
15: for all vi ∈ V do
16: for sr samples do
17: SameTypeSample(vi, sr,S′A)
18: SameTypeSample(vi, sr,S′B)
19: DiffTypeSample(vi, sr, sγ,Γ(Γ(Γ(·))),S′V)

3.4 Empirical Evaluation

Link Prediction We evaluate the performance of our proposed embeddings across

three link prediction tasks and a range of training-test splits. When removing edges,

we visit each in random order and remove them with probability h provided the

removal does not disconnect the graph. This additional check ensures all nodes appear

in all experimental embeddings. The result is the subgraph G′ = (V,E ′, h). Deleted

edges form the positive test-set examples, and we generate set of negative samples

(edges not present in original graph) of equal size. These samples are used to train

three sets of link-prediction models: the A-Personalized, B-Personalized (where A

and B are parts of V), and unified models.

43

The A-personalized model is a support vector machine trained on the neigh-

borhood of a particular node. A model personalized to i ∈ A learns to identify a

region in B-space corresponding to its neighborhood in G′. We use support vector

machines with the radial basis kernel (C = 1, γ = 0.1) because we find these models

result in robust performance given limited training data, and because the chosen ker-

nel function allows for non-spherical decision boundaries. We additionally generate

five negative samples for each positive sample (a neighbor of i in G′). In doing so

we evaluate the ability to capture type-specific latent features, as each personalized

model only considers one-type’s embeddings. While the personalized task may not be

typical for production link-prediction systems, it is an important measure of latent

features found in each space. In many bipartite applications, such as the six we have

selected for evaluation, |A| and |B| may be drastically different. For instance, there

are typically more viewers than movies, or more buyers than products. Therefore it

becomes important to understand the differences in quality between the latent spaces

of each type, which we evaluate through these personalized models.

The unified link-prediction model, in contrast, learns to associate αiβj ∈ E ′

with a combination of ε(αi) and ε(βj). This model attempts to quantify global trends

across embedding spaces. We use a hidden layer of size k with the ReLU activation

function, and a single output with the sigmoid activation. We fit this model against

mean-squared error using the Adagrad optimizer [68].

Datasets. We evaluate each embedding across six datasets detailed in Ta-

ble 3.1. The Amazon, YouTube, DBLP, Friendster, and Livejournal graphs are all

taken from the Stanford Large Network Dataset Collection (SNAP) [140]. We select

the distribution of each under the listing “Networks with Ground-Truth Communi-

ties.” Furthermore, we collect the MadGrades graph, from an online source provided

by the University of Wisconsin at Madison [3]. This graph consists of teachers and

44

Γ(αi) Γ(βj)
Graph |A|/|B| md max md max SR LCP
Amazon 16,716/5,000 3 49 8 328 75.8 1.6
DBLP 93,432/5,000 1 12 8 7,556 174.7 81.7
Friendster 220,015/5,000 1 26 133 1,612 80.3 58.3
Livejournal 84,438/5,000 1 20 16 1,441 100.9 27.0
MadGrades 11,951/6,462 3 39 4 393 57.3 99.7
YouTube 39,841/5,000 1 54 4 2,217 113.3 80.6

Table 3.1: Graph Summary. We report the median (md) and max degree for
each node set, as well as the Spectral Radius (SR) and the percentage of the largest
connected component (LCP).

course codes, wherein an edge signifies that teacher αi has taught course code βj. We

clean this dataset by iteratively deleting any instructor or course with degree 1 until

none remain.

Experimental Parameters. We evaluate the performance of our proposed

methods: FOBE and HOBE, as well as our two combination approaches: Direct and

Auto-Regularized Combination Bipartite Embedding. We compare against all meth-

ods described in Section 3.1.1. We evaluate each across the six above graphs and nine

training-test splits h = 0.1, 0.2, ..., 0.9. For all embeddings we select dimensionality

k = 100. For Deepwalk, we select a walk length of 10, a window size of 5, and 100

walks per node. For LINE we apply the model that combines both first- and second-

order relationships, selecting 10,000 samples total and 5 negative samples per node.

For Node2Vec we select 10 walks per node, walk length of 7 and a window size of

3. Furthermore, we select default parameters for BiNE and Metapath2Vec++. For

the latter, we supply the metapath of alternating A−B −A nodes, the only metap-

ath in our bipartite case. For FOBE and HOBE we generate 200 samples per node,

and when sampling neighborhoods we select 5 nodes with replacement upon each

observation. After training both methods, we fit the Direct and Auto-Regularized

Combination methods, each trained using only the results of FOBE and HOBE.

45

Recommendation: We follow the procedure originally described by Gao et al. and

evaluate our proposed embeddings through the task of recommendation [79]. Recom-

mendation systems propose products to users in order to maximize the overall inter-

action rate. These systems fit the bipartite graph model because they are defined on

the set of user-product interactions. While many such systems could be reformulated

as operations on bipartite networks, methods such as matrix factorization and user-

user nearest neighbors do not capture granular local features to the same extent as

modern graph embeddings [79, 33]. In contrast, bipartite graph embedding provides

a framework to often learn richer latent representations for both users and products.

These representations can then be used directly through simple similarity measures,

or added to existing solution archetypes, such as k-nearest neighbors, which often

provides significant quality benefits.

While there are many similarities between recommendation and link predic-

tion, the key difference is the introduction of weighted connections. As a result,

recommendation systems are evaluated based on their ability to rank products in

accordance to held-out user supplied rankings. This is quantified through a num-

ber of metrics defined on the top k system-supplied recommendation for each user.

When using embeddings to make a comparison, Gao et al. rank products by their

embedding’s dot product with a given user. However, our proposed methods relax the

constraint that products and users be directly comparable. As a result, when rank-

ing products for a particular user for our proposed embeddings we must first define

a product-space representation. For each user we collect the set of known product

ratings, and calculate a product centroid weighted by those ratings.

Experimental Procedure. We present a comparison between our proposed

46

methods and all previously discussed embeddings across the DBLP1 and LastFM2

datasets. Note that this distribution of DBLP is the bipartite graph of authors and

venues, and is different from the community-based version distributed by SNAP.

The LastFM dataset consists of listeners and musicians, where an edge indicates

listen count, which we log-scale to improve convergence for all methods. We start

by splitting each rating set into training- and test-sets with a 40% holdout. In the

case of DBLP we use the same split as Gao et al. We use embeddings from the

training bipartite graph to perform link prediction. We then compare the ranked list

of training-set recommendations for each user, truncated to 10 items, to the test-set

rankings. We calculate 128-dimensional embeddings for each method, and report F1,

Normalized Discounted Cumulative Gain (NDCG), Mean Average Precision (MAP)

and Mean Reciprocal Rate (MRR).

3.5 Significance and Impact

In contrast to what is typically claimed in papers, we observe that the link

prediction data (Table 3.2) demonstrates that different graphs lead to very different

performance results for the existing state-of-the-art and proposed embeddings. More-

over, their behavior is changed with different holdouts when the size of training set is

smaller. For instance, our methods are above the state of the art in the Youtube and

MadGrades graphs, but Metapath2Vec++, Node2Vec, and LINE each have scenar-

ios wherein they outperform the field. Additionally, while there are scenarios where

the combination methods perform as expected, such as in the Youtube, MadGrades,

and DBLP B-Personalized cases, we observe that variability in the other proposed

embeddings can disrupt this performance gain.

1https://github.com/clhchtcjj/BiNE/tree/master/data/dblp
2https://grouplens.org/datasets/hetrec-2011/

47

https://github.com/clhchtcjj/BiNE/tree/master/data/dblp
https://grouplens.org/datasets/hetrec-2011/

— FOBE — HOBE — D.Comb.

— A.R.Comb. - - Deepwalk - - LINE

- - Node2Vec - - BiNE - - Metapath2Vec++

A-Pers. B-Pers. Unified
A

m
az

on
D

B
L

P
F

ri
en

d
st

er
L

iv
ej

ou
rn

al
M

ad
G

ra
d
es

Y
ou

T
u
b

e

Table 3.2: Link Prediction Accuracy vs. Training-Test Ratio. Methods represented
by dashed lines indicate the state-of-the-art, while solid lines indicate methods pre-
sented in this work.

48

When comparing the A- and B-Personalized results, its is important to keep in

mind that for all considered graphs there are more A nodes (|A|> |B|), and therefore

these nodes tend to have fewer neighbors (E[Γ(α)] < E[Γ(β)]). For this reason, we find

that different embedding methods can exhibit significantly different behavior across

both personalized tasks. Intuitively, performing well on the A-Personalized set indi-

cates an ability to extrapolate connections between elements with significantly more

sparse attachments, such as selecting a new movie given a viewer’s limited history.

In contrast, performance on the B-Personalized set indicates an ability to uncover

trends among relatively larger sets of connections, such as determining what patterns

are common across all the viewers of a particular movie. While these two tasks are

certainly related, we observe that the B-Personalized evaluation appears to be sig-

nificantly more challenging for a number of embedding methods, such as Node2Vec

on Lovejournal and YouTube. In contrast, HOBE succeeds in this evaluation for

both cases, as well as Friendster and MadGrades. Metapath2Vec++ additionally is

superior on LiveJournal and Friendster, but falls behind on DBLP, MadGrades, and

Youtube.

In the recommendation results (Table 3.3 and 3.4), our methods improve the

state-of-the art. This is further evidence that our sampling decompositions are better

able to capture product-specific features. Our biggest increase is in MRR for DBLP,

indicating that the first few suggestions from our embeddings are often more relevant.

The performance of HOBE, demonstrates the ability for algebraic distance to esti-

mate useful local similarity measures. Interestingly, in the LastFM dataset, FOBE

outperforms HOBE. One reason for this is that LastFM contains significantly more

artists-to-user than DBLP contains venues-to-author. As a result the amount of in-

formation present when estimating algebraic similarities is different across datasets,

and insufficient to boost HOBE above FOBE.

49

Metric@10: F1 NDCG MAP MRR
DeepWalk .0850 .2414 .1971 .3153
LINE .0899 .1441 .0962 .1713
Node2Vec .0854 .2389 .1944 .3111
MP2V++ .0865 .2514 .1906 .3197
BINE .1137 .2619 .2047 .3336
FOBE .1108 .3771 .2382 .4491
HOBE .1003 .4054 .3156 .6276
D.Comb. .0753 .2973 .2362 .5996
A.R.Comb. .0667 .2359 .1730 .5080

Table 3.3: DBLP Recommendation. Note: result numbers from prior works are
reproduced from [79].

Metric@10: F1 NDCG MAP MRR
DeepWalk .0027 .0153 .0069 .1844
LINE .0067 .0435 .0229 .2477
Node2Vec .0279 .1261 .0645 .2047
MP2V++ .0024 .0153 .0088 .2677
BINE .0227 .1551 .0982 .3539
FOBE .0729 .3085 .1997 .3778
HOBE .0195 .1352 .0789 .3400
D.Comb. .0243 .1285 .0795 .3520
A.R.Comb. .0388 .1927 .1249 .3915

Table 3.4: LastFM Recommendations.

50

When looking at both link prediction and recommendation tasks, we observe

a highly variable performance of the combination methods. In some cases, such as

the MadGrades and YouTube link prediction tasks, as well as the LastFM recom-

mendation task, these combinations are capable of learning a joint representation

from FOBE and HOBE that can improve overall performance. However, in other

cases, such as the Amazon link prediction task, the combination method appears to

have significantly decreased performance. This effect is due to the increased number

of hyperparameters introduced by the combination approach, which are determined

not by the complexity of a given dataset, but are instead determined by the number

and size of input embeddings. In the Amazon dataset, these free parameters lead to

overfitting the combination embeddings.

3.6 Sensitivity Study

We select the MadGrades network to demonstrate how our proposed methods

are effected by the sampling rate. We run ten trials for each experimental sampling

rate, consisting of powers of 2 from 1 to 1024. Each trial represents an independent

50% holdout experiment. We present min, mean, and max observed link prediction

accuracy.

To continue comparing FOBE and HOBE, it would appear that higher-order

sampling is often able to produce better results, but that the algebraic distance heuris-

tic introduces added variability that occasionally reduces overall performance. In

some applications it would appear that this variability is manageable, as seen in our

DBLP recommendation results. However in the case of link prediction on Amazon

communities, this caused an unintentional drop when FOBE remained more consis-

tent. Overall, FOBE and HOBE are fast methods that broaden the array of embed-

51

– Max – Mean – Min

Per-A Per-B Unified
F

O
B

E
H

O
B

E

Table 3.5: Link Prediction Accuracy vs. Sampling Rate. Depicts the effect of
increasing sr from 2 to 1024 on the MadGrades dataset, running 10-trials of the 50%
holdout experiment per value of sr.

ding techniques available for bipartite graphs. While no method is clearly superior

in every case, there exist a range of graphs and applications that are better suited by

these methods.

Looking to the sensitivity study (Tables 3.5), we see the variability of HOBE

is significantly larger for small sampling rates. However, we do observe that after

approximately 32 samples per node, in the case of MadGrades, this effect is reduced.

Still, considering FOBE does not exhibit this same quality, it is likely the variability

of the algebraic similarity measure that ultimately leads to otherwise unexpected

reductions in HOBES performance.

52

3.7 Conclusions

In this work we present FOBE and HOBE, two strategies for modeling bi-

partite networks that are designed to capture type-specific structural properties.

FOBE, which captures first-order relationships, samples nodes in small local neigh-

borhoods. HOBE, in contrast, captures higher-order relationships that are prioritized

by a heuristic signal provided by algebraic distance on graphs. In addition we present

two variants on an approach to learn joint representations that are designed to iden-

tify a “best of both worlds” embedding. We evaluate these methods against the

state-of-the-art via a set of link prediction and recommendation tasks.

Our results indicate that none of the considered embeddings are clearly su-

perior in every downstream embedding task, therefore we advocate for combination

approaches, which can adapt to many different scenarios. This result is significant

as practitioners often rely on a single embedding technique, and reuse embeddings

across a wide range of tasks. In Table 3.2 we identify methods such as Deepwalk [168]

may have significantly reduced performance on important sub-tasks, such as the B-

Personalized task in our case, even if their overall performance is still strong. While

the FOBE and HOBE methods are not a cure-all for embedding tasks, we do observe

that they are consistently capable of capturing both A- and B-specific features for

applications that rely on many same-typed comparisons. These methods are fast, eas-

ily parallizable, and capable of exceeding state-of-the-art performance on a range of

downstream embedding tasks. While the bipartite graph embeddings remain an un-

derstudied problem, FOBE and HOBE can provide higher-quality type-specific latent

features.

53

Chapter 4

Partition Hypergraphs with

Embeddings

Abstract

Problems in scientific computing, such as distributing large sparse matrix op-

erations, have analogous formulations as hypergraph partitioning problems. A hyper-

graph is a generalization of a traditional graph wherein “hyperedges” may connect

any number of nodes. As a result, hypergraph partitioning is an NP-Hard problem

to both solve or approximate. State-of-the-art algorithms that solve this problem

follow the multilevel paradigm, which begins by iteratively “coarsening” the input

hypergraph to smaller problem instances that share key structural features. Once

identifying an approximate problem that is small enough to be solved directly, that

solution can be interpolated and refined to the original problem. While this strategy

represents an excellent trade off between quality and running time, it is sensitive to

coarsening strategy. In this work we propose using graph embeddings of the initial

hypergraph in order to ensure that coarsened problem instances retrain key structural

54

features. Our approach prioritizes coarsening within self-similar regions within the

input graph, and leads to significantly improved solution quality across a range of

considered hypergraphs.

Reproducibility: All source code, plots and experimental data are available at

sybrandt.com/2019/partition .

4.1 Introduction

Hypergraphs provide the formalism needed to solve problems consisting of in-

terconnected item sets. Similar to a traditional graph, the hypergraph has the added

generalization that “hyperedges” may connect any number of nodes. Domains such

as very-large-scale integration for creating integrated circuits [116], machine learn-

ing [261, 95, 259], parallel algorithms [48], combinatorial scientific computing [161],

and social network analysis [197, 260] all contain significant and challenging instances

of hypergraph problems. One important problem, Hypergraph partitioning, involves

dividing the nodes of a hypergraph among k similarly-sized disjoint sets while re-

ducing the number of hyperedges that span multiple partitions. In the context of

load balancing, this is the problem of dividing logical threads (nodes) that share data

dependencies (hyperedges) among available machines (partitions) in order to balance

the number of threads per machine and minimize communication overhead. However,

hypergraph partitioning is both NP-Hard to solve [138] and approximate [43].

Therefore, state-of-the-art partitioners apply heuristically-backed algorithms

to overcome these inherent computational imitations [189]. The most common and

effective technique is the multilevel paradigm [15, 195, 116, 37, 62]. Multilevel par-

titioners consist of three phases, referred to collectively as the V-Cycle: coarsening,

the initial solution, and uncoarsening. We depict these phases in Figure 4.1. The

55

http://sybrandt.com/2019/partition

overarching idea behind this technique is to find a problem instance that shares key

structural features with the input hypergraph, but is small enough to be partitioned

directly. The initial solution to this small analogous problem can then be interpolated

and refined to apply to the input hypergraph.

The small analogous problem is identified through an iterative coarsening pro-

cess consisting of many levels. At each level, groups of similar nodes are identified,

and each is “contracted” into a single merged node at the next more-coarse level.

While grouping nodes, the goal is to identify self-similar regions of the current hy-

pergraph so that the more coarse problem instances retain key structural features.

Most commonly, these coarsening groups are formed by pairing nodes due to a sim-

ilarity measure [62, 195]. An n-level algorithm is one that identifies only one pair

of coarsening partners at each level [189], while a log n-level algorithm pairs almost

all nodes each time [62]. Coarsening stops once identifying a sufficiently small sub-

problem based on some threshold. The initial solution can then be identified directly

using a typically-inefficient classical algorithm. Now, the solution is uncoarsened back

through the levels in order to identify a solution to the original problem. Uncoarsen-

ing consists of three sub-phases: expansion, interpolation, and refinement. Expansion

undoes the coarsening at a given level by “expanding” the current level’s coarsened

nodes with those contracted in the prior. Next, interpolation assigns each expanded

node the partition label assigned to their corresponding coarse representation. Then,

local refinement cheaply updates the partition labels among the expanded nodes in

order to improve the overall solution quality for the next level. This process is re-

peated from the initial solution through all coarsening levels and back to the original

hypergraph, which is accepted as the solution to the partitioning problem.

Because the strategy used to contract nodes determines the coarsening at

each level, the quality of the initial solution, and the behavior of interpolation and

56

refinement during uncoarsening, we find that this single factor can dramatically effect

partitioning quality. Other work exploring coarsening strategies, such as relaxation-

based [195] or community-aware [100] coarsening, arrives with a similar conclusion.

4.1.1 Our Contribution

We propose embedding-based coarsening, a novel coarsening strategy that lever-

ages graph embeddings to prioritize the contraction of self-similar regions of the input

hypergraph in order to retain global structural features. This approach augments the

existing strategy that contracts nodes based on their co-participation in small hy-

peredges by adding an embedding-based term that can break ties among similarly

ranked coarsening pairs. A toy example of this phenomena is depicted in Figure 4.2,

wherein three potential coarsening pairs are equally ranked by the traditional scheme,

but embedding-based signals favor the pair that retains both key clusters.

The field of graph embedding is evolving rapidly, and the proposed embedding-

based coarsening is designed to be agnostic with respect to any particular technique,

provided that similarities between nodes are encoded via the dot product of embed-

ding vectors. Specifically, our proposed technique accepts a precomputed embedding

as an auxiliary input per-hypergraph, and we demonstrate that a wide range of ex-

isting embedding techniques improve partitioning performance similarly. Decoupling

partitioning from embedding enables embedding-based coarsening to more easily ben-

efit from future advances in machine learning techniques. In order to apply embedding

techniques designed for classical graphs, we need a classical representation of each in-

put hypergraph. The star-expansion [9] represents a hypergraph as an undirected

bipartite graph wherein hyperedges from the original structure form a new layer of

nodes. An edge between two nodes i and j in the bipartite structure indicates that

57

node i participated in hyperedge j within the original structure. As opposed to other

classical representations like the clique-expansion, the star-expansion retains all rel-

evant hypergraph information, and is scalable for large graphs [9]. Furthermore,

existing embedding techniques specifically designed for bipartite graphs [224] apply

to star-expanded graphs directly.

Given an input hypergraph and an embedding for each node of the input struc-

ture, embedding-based coarsening follows this outline at each coarsening level. First,

each node is assigned a score equal to the highest dot product between its embedding

and each of its neighbors. Nodes are visited in decreasing order by score. A visited

node is matched from among its neighbors based on the product of their classical edge-

wise score, and the dot product of each node’s embedding. After matching nodes,

based on whether we are performing n- or log n-level coarsening, mated nodes are

contracted. Newly coarsened nodes are assigned an embedding equal to the average

embedding of all initial embeddings contained within the coarse representation.

We implement our proposed coarsening strategy in both KaHyPar [189], which

is a n-level partitioner with state-of-the-art solution quality, as well as Zoltan [62],

which is a parallel log n-level partitioner with high quality and state-of-the-art speed.

Furthermore, we compare the effect of various different embedding techniques, in-

cluding Node2Vec [88], Metapath2Vec++ [66], and FOBE/HOBE [224], which were

designed specifically for bipartite graphs. We additionally compare the effect of each

embedding-based coarsening strategy with hMetis [115], Zoltan [62], PaToH [47],

KaHyPar (with community-based coarsening [100]), and KaHyPar Flow (with both

community-based coarsening and flow-based refinement [99])1. We compare perfor-

mance of each partitioner across 96 hypergraph from the SuiteSparse Matrix Collec-

1Neither hMetis nor PaToH provide source code that would allow us to implement embedding-
based coarsening for comparison. Instead, we can only use pre-compiled binaries for comparison
purposes.

58

tion [58]. For each graph, we compute one embedding using each of the proposed

techniques to serve as an auxiliary input across all trial. We compare quality across

both the “cut” and “connectivity” objectives as well as for partition counts from 2 to

128 for each partitioner2. For each combination of experimental parameters we run

20 trials in order to compare the variance and establish significance with respect to

different random seeds. Overall, we produce over 500,000 individual trials.

We find that embedding-based coarsening has a significant improvement over

the state of the art that is especially pronounced for smaller partition counts (¡32). In

some cases, this leads to a solution quality that is improved by as much as 400%. Be-

cause embedding-based coarsening replaces the traditionally random visit order with

one that prioritizes self-similar regions of the hypergraph, we also observe a standard

deviation of quality that is a small fraction of baseline methods. All experimental

code, data, visualization scripts, and a database of all experimental results, including

all hyperparameters per-trial, can be found at: sybrandt.com/2019/partition .

4.2 Notation and Preliminary Concepts

A hypergraph H = (V,E) consists of nodes v ∈ V and hyperedges e ∈ E. As

opposed to a traditional graph, each hyperedge may contain any non-empty subset

of V . The hypergraph partitioning problem is to divide V into k disjoint subsets

of similar size while minimizing a given objective function. Two common objectives

considered here are “cut” and “connectivity.” Cut measures the number of hyperedges

spanning more than one partition. If λ(e) is the number of partitions spanned by edge

2hMetis does not supply a “connectivity” objective and is therefore omitted from that set of
comparisons.

59

http://sybrandt.com/2019/partition

Figure 4.1: A standard V-cycle, consisting of coarsening, and initial partition, and
uncoarsening. Node size corresponds to the weight of hypothetical coarse nodes. The
dashed line demonstrates the initial partition and iterative local searches at each
uncoarsening level. In this example, the multilevel hierarchy consists of three levels.

Figure 4.2: An example where embedding-based coarsening improves quality. Above
we depict an example hypergraph and the set of coarsening pairs that would all re-
ceive the highest similarity score through the traditional edge-wise similarity function.
When the embedding is introduced, we can prioritize the coarsening pair that best
retains the initial global structure. In this case, we select the DE pair, as this still
consists of a cluster of weight 3 connected to a cluster of weight 2.

60

e, then the cut objective is defined as:

cut =
∑

e∈E,λ(e)>1

1 (4.1)

The “connectivity” objective, also commonly referred to as “k− 1,” penalizes

each edge by the number of spanned partitions. In the case where k = 2, this is

equivalent to cut. Formally, the connectivity objective is defined as:

connectivity =
∑
e

λ(e)− 1 (4.2)

Weights. Although we consider unweighted input hypergraphs (all nodes and hy-

peredges count the same towards the objectives), the multilevel paradigm introduces

weights to intermediate sub-problems. Each node and hyperedge has a corresponding

weight (wv and we) equal to one for the input hypergraph. During coarsening, if two

nodes vi and vj are contracted into a new coarse node v′, then wv′ = wvi +wvj . This

new node v′ will also be added to all edges originally containing either vi or vj, before

removing those original nodes from the resulting coarse hypergraph. If two edges are

“parallel” in the resulting coarse structure, meaning they contain the same subset of

nodes (e1 = e2), they will be replaced with a new hyperedge e′ containing the same

nodes but with added weights: we′ = we1 +we2 . When solving for cut and connectiv-

ity for intermediate sub-problems during the multilevel strategy, we introduce these

weights into the objective:

weighted cut =
∑

e∈E,λ(e)>1

we (4.3)

weighted connectivity =
∑
e

(λ(e)− 1)we (4.4)

61

One issue during coarsening is the potential for individual nodes to accumulate

a disproportionate amount of weight. When this occurs, balanced partitioning can

become impossible at the coarsest level, especially if one node’s weight exceeds |V |/k.

In order to avoid this negative effect, multilevel partitioners enforce a weight tolerance

w(T), which is parameterized by the user. No coarsening partners may be contracted

if their resulting coarse node would exceed this limit.

Imbalance Constraint. It is important to balance the number of nodes in the

resulting partitions. Therefore, partitioners include an optimization constraint to

determine how uneven the resulting partitions are allowed to be. For each partition

Vi ⊂ V , given a predefined imbalance tolerance α, this constraint is defined as:

∑
v′∈Vi

wv′ ≤ (1 + α)

⌈
1

k

∑
v∈V

wv

⌉
(4.5)

Embeddings. We use the function ε : V → Rn to denote a pre-trained embedding.

Conceptually, this is a lookup table that assigns a node in the input hypergraph to a

real-valued n-dimensional vector. In our experiments we select n = 100.

4.3 Background and Related Work

Multilevel Partitioning. First introduced to speed up existing algorithms [20]

and inspired by multigrid and multiscale optimization strategies [39], the multilevel

method was quickly recognized as an effective method to improve the quality of hyper-

graph partitioning [117], and is currently considered to be one of the state-of-the-art

methods for this problem [45]. As introduced in Section 4.1,the multilevel paradigm

solves problems by following the v-cycle pattern that consists of coarsening, the initial

solution, and uncoarsening. This approach is effective because coarse sub-problems

62

are easier to solve yet they retain global structural features of the original. Coarse

sub-problems are created by iteratively merging multiple nodes at the current “finer”

level into single nodes at the “coarser” level. Once sufficiently small, a partitioner can

directly solve the coarsest problem instance using an algorithm that would normally

be infeasible for large problems. The uncoarsening process then applies that solution

through iteratively finer problem instances by expanding contracted nodes, interpolat-

ing coarse solutions onto finer problem instances, and refining intermediate solutions

at each level. Once the uncoarsening process reaches the most-fine problem instance,

the refined solution is accepted as the partitioning of the input hypergraph. Usually,

at each level of the coarsening process all or almost all nodes have at least one merg-

ing partner, resulting in log n levels. This is the approach used by Mondriaan [235],

hMetis2 [116], Zoltan [62], and PaToH [47]. However, KaHyPar [189] implements

an n-level approach where at each level only one pair of nodes is contracted. The

multilevel paradigm is the current gold-standard for hypergraph partitioning, hav-

ing achieved an excellent trade off between time and quality. Unsurprisingly, most

practical and state-of-the-art partitioners follow this paradigm, including all methods

considered in this work. For an extensive review of both classical and hypergraph

partitioning methods, we refer the reader to [45, 25].

Coarsening Strategies. State-of-the-art partitioners follow heuristic strategies to

identify groups of nodes to contract during coarsening. A good coarsening strategy

is one that groups together nodes that will ultimately share the same partition label,

meaning that the coarser solution can be interpolated to the finer solution without

a loss of quality. In practice, this loss of quality is to be expected, which is why

local search refinement is common during uncoarsening. However, if global structural

features are not preserved, the loss of quality during interpolation cannot be rectified

through the fast local refinement process. Therefore, the choice of coarsening heuristic

63

is paramount.

Most heuristics used to identify nodes for contraction do so by scoring node

pairs, and most partitioners, including Mondriaan [235], hMetis2 [116] and Zoltan [62],

measure the edge-wise inner product, or some variation. The edge-wise inner-product

is the Euclidean inner product of the weighted hyperedge incidence vectors [62]. Edge

weights are defined formally in Section 4.2. Specifically, if we is the weight of hyper-

edge e, then the edge-wise inner product of nodes u and v is defined as:

∑
u,v∈e∈E

we (4.6)

Although this approach is simplistic, it is also very computationally inexpensive and

has provided a firm baseline. As mentioned, many variations exist, such as absorp-

tion, implemented in PaToH [47], and heavy edge, implemented in hMetis2 [116],

Parkway [231], and KaHyPar [100], as well as a number of other normalization tech-

niques, often based on node or hyperedge degree. Heavy edge, which is of particular

interest due to its simple formulation and high performance, simply normalizes hyper-

edge weight by the expected degree of the resulting hyperedge following contraction.

If |e| is the number of nodes present in hyperedge e, then this score is:

SE(u, v) =
∑

u,v∈e∈E

we
|e|−1

(4.7)

One key limitation to the edge-wise score heuristics is that each only considers

local information around each node. Therefore, global structural features can be col-

lapsed during coarsening. This work seeks to use graph embeddings to provide this

global information, however prior work has attempted to provide similar signals in

alternate ways. Shaydulin et al. introduce algorithmic distance for hypergraphs, a

64

relaxation-based similarity measure that extends a similar approach from traditional

graphs [50]. This measure treats nodes as entities in a mutually-reinforcing envi-

ronment, which enables this technique to apply a fast relaxation-based approach to

supply a coordinate per node. Conceptually this acts as a one-dimensional embed-

ding, wherein two nodes receive a similar coordinate if their neighborhoods are similar.

This similarity measure is used to quantify node similarities and assign weights to

hyperedges.

Another approach to incorporate global information is community-aware coars-

ening, which uses clustering information to restrict matching between communi-

ties. This approach, which is implemented in KaHyPar, makes the assumption

that nodes belonging to different clusters of the input hypergraph should never

be contracted. The proposed clustering is performed by a fast global modularity-

maximizing algorithm, leveraging the connection between partitioning and cluster-

ing. This modularity-based clustering, which groups star-expanded nodes within a

bipartite representation of a hypergraph, identifies communities are internally dense

and externally sparse [164], which is desired for a good partitioning. We note, and

discuss further in Section 4.6, that the clusters found by this modularity-maximizing

approach are similar to the self-similar regions within a graph embedding. However,

in some scenarios the hard restriction to never merge nodes across communities ap-

pears to be too restrictive. Instead, embedding-based coarsening simply penalizes the

contraction of nodes across clusters, allowing more flexible decisions for nodes along

the periphery.

Refinement. While this work proposes a new coarsening strategy, important work

also explores the refinement stage of uncoarsening, wherein each partitioner performs

local search in order to improve the interpolated coarser solution on the finer level.

The typical strategy is the node-moving heuristic, wherein each expanded node at

65

the newly refined level is given the option of switching partition label. A majority

of hypergraph partitioners use a variation of Fiduccia-Mattheyses [75] or Kernighan-

Lin [118] to perform these local searches [99, 235, 116, 62, 47, 231]. Recently, Heuer et

al. introduced a flow-based refinement scheme for k-way hypergraph partitioning [99],

extending similar approaches from graph partitioning [187]. This flow-based refine-

ment, which is implemented in KaHyPar, is considered as a temperate case within

our benchmark. As a result, we can compare the performance of embedding-based

coarsening without flow-based regiment, and vice-versa.

Additional Partitioning Strategies. There are a few coarsening and partitioning

strategies that are not included in our benchmark, but are worth additional discussion.

Memetic partitioning, also proposed for KaHyPar, uses the principles of genetic algo-

rithms to discover improved partitioning solutions [15]. This approach creates high

quality partitions by iterating through different “generations” of solutions, starting

with an initial generation produced by KaHyPar run multiple times with different

seeds. From the initial set, multiple combination operators “breed” new solutions

by combining some number of “parents” to form new solutions. Each iteration is

designed to improve the population’s average connectivity metric. Combination op-

erators are specifically posed such that offspring solutions perform at least as good

as its corresponding parents. While this approach is demonstrated to improve overall

hypergraph partitioning quality, it does so by adding a meta process to the set of

initial hypergraph solutions. We anticipate that adding embedding-based coarsen-

ing as a method for generating a high quality initial solution population may be a

complimentary way to improve the overall process. Aggregative coarsening [196] uses

ideas from algebraic multigrid, extending an unfinished attempt published in Sandia

Summer Reports [44]. At each step of the coarsening process a set of seed vertices is

selected. Each seed then becomes a center of an aggregate, with non-seeds assigned

66

to seeds using different aggregation rules. An aggregate at finer level forms a vertex

at coarser level. Two aggregation rules, based on inner product matching and stable

matching were explored. Our embedding-based coarsening can be used within the

aggregative coarsening to inform the aggregation rules.

4.3.1 Graph Embeddings

Our embedding-based coarsening accepts embeddings for each node of the

input hypergraph as an auxiliary input. While we make the assumption that node

similarity is encoded through the dot product of embeddings, we do not depend on any

particular embedding technique. However, there are a range of embedding methods

that we consider in our benchmark due to their scalability and applicability to the

bipartite graphs produced by the star-expansion process. At a high level, graph

embeddings assign a real-valued vector of fixed size to each node (and sometimes

each edge) of an input graph. Therefore, techniques such as non-negative matrix

factorization, principal component analysis, or even algebraic distance [195] can all

apply as embeddings from the perspective of embedding-based coarsening. While

our early experiments explored all of these and more, we found the most significant

improvements when using neural-network-based embeddings.

In all of the considered embedding techniques, various node features are en-

coded via the dot product of node embeddings. Furthermore, new techniques are

published frequently that identify new ways to encode latent node footers. Rather

than depend on a particular graph embedding technique, this work simply assumes

that some measure of global graph structure is encoded via the dot product of embed-

dings, meaning that two nodes with a higher dot product of embeddings will be more

similar. In this manner, new advances in graph embedding, or fine-tuned versions of

67

existing algorithms for particular graphs, can be introduced into our proposed strat-

egy. Importantly, this work does not seek to establish any graph embedding technique

as inherently better for hypergraph partitioning. Instead, we find that all considered

embeddings greatly improve solution quality.

Neural Graph Embedding. The Deepwalk graph embedding [168], which applies

the skip-gram model [155] to random walks of nodes, marks the beginning of neural

network graph embeddings. The node2vec approach [88] modifies Deepwalk to pa-

rameterize random walk behavior, allowing walks to explore local regions or broad

swaths of a graph. In doing so, Grover et al. identify that node2vec graph embeddings

can encode both homophilic and structural latent features. Tsitsulin et al. general-

ize the formalism across a range of random-walk based graph embedding techniques,

noting that community-based, role-based, and structural features of nodes can all be

encoded in a single unified framework [232].

Bipartite Embeddings. The above graph embeddings were designed with general

graphs in mind. However, a few works have specifically proposed embedding tech-

niques adapted for bipartite graphs. These techniques receive specific focus in this

work as we produce bipartite graphs when performing the star-expansion of input

hypergraphs. Sybrandt et al. [224] explore a number of such techniques when pre-

senting First- and Higher-Order Bipartite Embedding (FOBE and HOBE), including

BiNE [79], and Metapath2Vec++ [66]. Bipartite Network Embeddings (BiNE) gen-

erates walks that are weighted by a network centrality measure, and uses these walks

to fit both explicit and implicit relationships simultaneously. However, this method

performs similar to random embeddings for a range of link prediction tasks in [224],

and for this reason is omitted from the benchmark in this work. Metapath2Vec++

extends the Deepwalk framework in two ways. First, random walks are restricted to

follow particular patterns of nodes. Second, node embeddings are computed using

68

different parameters based on that node’s type. In the case of bipartite graphs, the

only random walk pattern is that of alternating node types, but the added flexibility

gained by parameterizing each side of a bipartite graph separately leads to improved

performance in [224].

Because most readers will not be familiar with FOBE and HOBE, and be-

cause we find these techniques are very beneficial to embedding-based coarsening, we

summarize these techniques here. FOBE samples all edges in a bipartite graph, as

well as every indirect connection between two nodes on the same side. Formally, if

G = (V,E) is a bipartite graph, Γ(x) is the neighborhood of node x, and u, v ∈ V are

nodes, then FOBE assigns a sampled score for the u, v pair as follows:

S(FOBE)(u, v) =

1 Γ(u) ∩ Γ(v) 6= ∅

1 uv ∈ E

0 otherwise

(4.8)

Embeddings are fit such that the sigmoid of the dot product of embeddings

match these binary samples. Specifically, this technique minimizes the following loss

associated with a single u, v pair where ε(x) indicates the learned embedding of node

x:

L(FOBE)(u, v) = σ(ε(u), ε(v)) log

(
S(FOBE)(u, v)

σ(ε(u), ε(v))

)
where σ(x) =

1

1 + e−x

(4.9)

HOBE, in contrast, learns higher-ordered relationships that are weighted us-

ing algebraic distance, the same underlying technique used within relaxation-based

coarsening [195]. Algebraic distance is an iterative relation process that places all

nodes on the unit interval, such that similar nodes are more likely to share similar

69

algebraic coordinates. Specifically, the algebraic coordinate of node u is determined

by this iterative process:

ai+1(u) =
1

2

ai(u) +

∑
v∈Γ(u)

ai(v)|Γ(v)|−1

∑
v∈Γ(u)

|Γ(v)|−1

 (4.10)

Here, a0 is randomly initialized, and the algebraic coordinate for u is deter-

mined after a fixed number of steps t. We summarize the algebraic distance between

two nodes across multiple instances of the above relaxation process started using var-

ious random seeds. If we run R = 10 random restarts, then the similarity between

nodes u and v is:

s(u, v) =

√
R− d(u, v)√

R

where d(u, v) =

√√√√ R∑
r=1

(
a

(r)
t (u)− a

(r)
t (v)

)2
(4.11)

Using algebraic distance, HOBE weights similarities between nodes in the

following manner:

S(HOBE)(u, v) =

α(u, v) Γ(u) ∩ Γ(v) 6= ∅

max

max
x∈Γ(v)

α(u, x),

max
x∈Γ(u)

α(x, v)

 uv ∈ E

0 otherwise

where α(u, v) = max
x∈Γ(u)∩Γ(v)

min (s(u, x), s(v, x))

(4.12)

Then, HOBE learns embeddings to match the above samples to the dot prod-

uct of embeddings through the mean-squared-error objective. The loss associated

70

with a u, v pair is:

L(HOBE)(u, v) =
(
S(HOBE)(u, v)−max(0, ε(u)ᵀε(v))

)2
(4.13)

Combination Embeddings. To demonstrate the ability for embedding-based coars-

ening to apply to any given embeddings, we explore the combination approach also

presented by Sybrandt et al. in [224]. This method learns a joint representation for

each node given multiple pretrained embeddings. This technique does not rely on

any random walk strategy, and instead learns a unified embedding per-node given

the edge list as a set of embeddings per node. The particular model combines a link-

prediction objective with an auto-encoding objective, and in doing so ensures that

the resulting joint embedding captures relevant structural signals that are needed to

reproduce both the edge list as well as the input embeddings. This technique is very

similar to that presented by Wang et al. [242] in that it consists of two connected

auto encoders. The result of this method is an embedding that merges the structural

features present in a range of embeddings while preserving any useful distinct features

from across the set. We direct the reader to [224] to find the specifics of this approach.

Deep Learning Graph Embedding. In addition to the above techniques, which

are generally fast, scalable, and parallel sizable, there are another set of deep-learning

embedding techniques that apply larger models to the problem of graph embedding.

One popular technique, the graph convolutional network [122], constructs a neural

network in the same structure as the input graph, and embeddings are derived by

a “message-passing” function that distributes node features among neighborhoods.

Another technique by Cao et al. learns deep representation by first constructing

a large co-occurrence matrix from a process of “random-surfing” following by deep

auto encoders [46]. A similar auto-encoder-based approach is presented by Wang et

71

al. [242], wherein a pair of deep auto-encoders both encode nodes independently, as

well as ensure that similar nodes are assigned similar embedding. While these deep-

learning techniques do achieve high quality results for relatively small graphs, these

techniques are less scalable than the previously discussed class of algorithms, due

to their larger model structure and the accompanying need for more graph samples.

While these techniques could certainly improve the quality of embedding-based coars-

ening for some hypergraphs, we designed our proposed technique to be independent of

any particular embedding, and evaluated our technique over a large collection of hy-

pergraphs and scenarios. As a result, the analysis of deep-learning graph embedding

techniques was infeasible for this work.

4.4 Embedding-Based Coarsening

Embedding-based coarsening begins with a user-supplied hypergraph as well

as an embedding of each node. For instance, we use the star-expansion [9] of the

hypergraph in order to apply a range of embedding techniques designed for classical

graphs. During coarsening, nodes are visited in an order determined by the embed-

dings of each node’s neighborhood. When visited, an unmatched node is paired with

whichever neighbor maximizes a combined measure of edge-wise inner product as well

as embedding dot product. After identifying matches, paired nodes are contracted

into new coarse nodes, which are assigned an embedding equal to the average of all its

contracted embeddings. Because embedding-based coarsening preserves more global

structural features than other methods, the initial partitioning solution is more appli-

cable to the large-scale graph, resulting in higher partitioning quality. We implement

embedding-based coarsening in both Zoltan [62] and KaHyPar [189], and explore

a range of embedding techniques, including node2vec [88], MetaPath2Vec++ [66],

72

FOBE and HOBE [224], as well as merged embeddings from among this set.

Node Visit Order. We begin matching nodes in an order that tries to prioritize self-

similar regions of the input hypergraph. Specifically, a node is a good candidate for

being contracted at the current level if it shares a hyperedge with a partner that has a

very similar embedding. This indicates that both nodes share many global structural

features that would be preserved in their coarsened replacement. However, it is also

important to reduce the weight of the resulting coarse nodes. While we also apply

more explicit weight-based limitations below, maintaining the balance of coarse node

weights begins with adding a weight normalization to this embedding-based similarity

score. Otherwise, very dense regions of the network will be contracted into extremely

imbalanced and heavy nodes before the rest of the hypergraph, which can eventually

invalidate the imbalance constraint. Note that Section 4.2 contains more thorough

definitions for the embedding function ε and node weight w, as well as the rest of the

notation used in this section. Using these concepts, we can order nodes based on how

similar each is to its closest neighbor. Specifically, we order each node u with respect

to the following:

SO(u) = max
v∈Γ(u),u 6=v

ε(u)ᵀε(v)

wuwv
(4.14)

Scoring Contraction Partners. When visiting node u at a given level of coarsen-

ing, we must select a neighbor v with which it will contract into a new coarse node in

the following level. To do so, we assign a score to each neighbor of u, and select the

node with the highest score to match with. We assign scores based on a combination

of the KaHyPar “heavy edge” scoring function [100], as summarized in Section 4.3, as

well as the dot product of embeddings. The heavy edge scoring function increases the

score of hyperedges with fewer nodes. In real-world applications, this can correspond

to “niche” communities that tend to carry more meaning for those involved. We ad-

73

ditionally penalize this score by the node’s weights in order to reduce the imbalance

of the resulting coarse nodes. Specifically, we assign a score to neighboring nodes u

and v during the matching process equal to:

Sε(u, v) =

(
ε(u)ᵀε(v)

wuwv

) ∑
e∈Γ(u)∩Γ(v)

we
|e|−1

 (4.15)

Note that in order for a node pair to receive a high Sε score, they must both

share low-participation hyperedges as well as global structural embedding-based fea-

tures. This way, embedding-based coarsening allows us to break ties between multiple

nodes that all co-occur in similar intersections of similarly weighted hyperedges, which

has the effect of breaking ties, as depicted in Figure 4.2. Additionally, this measure

provides a sorting criteria who’s relative values is more important than its absolute

value. For this reason we observe a significant benefit by not normalizing the dot

product value. While some embedding techniques encode node similarity through

cosine similarity, which normalizes the dot products between nodes, others do not. In

these cases, the relative magnitudes of embedding dot products is a valuable signal

for determining coarsening partners.

Imbalance Constraint. As previously stated, it is also important to ensure that

the weight of coarsened nodes remains reasonably balanced so that no coarse node be-

comes so “heavy” that the overall partitioning becomes imbalanced. To address this,

we only match nodes that will produce coarse nodes below a given weight tolerance.

Different partitioners have different strategies for selecting an imbalance constraint,

but typical values are between 0.5% − 1% of the input graph, normalized by the

desired number of partitions. We accept the weight tolerance w(T) to be a hyper-

parameter determined by the partitioner. Then, when matching nodes u and v, we

disqualify any pair such that wu + wv > w(T).

74

Embeddings. We explore a range of embedding techniques to produce a vector per

node that functions as ε in the above scoring functions. For the sake of comparison,

we choose 100-dimensional embeddings for all cases and for all hypergraphs. We only

embed each considered hypergraph once per method, and interpolate intermediate

representations for coarsened nodes. This interpolation consists of the average of all

initial node embeddings present in the coarsened node. For instance, if the coarse

node u has weight wu, then that number of nodes from the input hypergraph have

been accumulated into u. These initial nodes, v1, . . . , vwu each have embeddings that

were supplied in the initial hypergraph embedding. Therefore, we define ε(u) to be

the following in the case where u is a coarse node that does not appear in the initial

embedding:

ε(u) =
2

wu

wu∑
i=0

ε(vi) (4.16)

Implementations. We implement our algorithm in both KaHyPar [189], the n-level

partitioner, as well as Zoltan [62], the log n-level partitioner. These two partition-

ers are considered as other alternatives such as PaToH [47] and hMetis [115] do not

provide open source implementations. In each, embedding-based coarsening consists

of only a few hundred lines of code, demonstrating that both partitioners are easily

expandable for new coarsening algorithms. For ease of development, we use single-

tons to manage the state of the embedding, and overwrite functions related to scoring

neighboring nodes during the coarsening process. We additionally implement a parti-

tioner independent prepossessing step to convert a hypergraph into a star-expanded

classical graph in order to apply existing graph embedding techniques. The output of

these graph embeddings is supplied as an auxiliary input to the singleton embedding

manager. Overall, this separation of embedding and partitioning allows easy exper-

imentation and adaptation with respect to new and constantly changing embedding

75

techniques. The specific algorithm we implement, which summarizes the above steps,

is summarized in Procedure 2

Procedure 2 Embedding-based Coarsening.

Output: Produces a set of (u, v) pairs to be contracted in the next level of coarsening.
1: Mu ← ∅ ∀u ∈ V . M is the matching array.
2: Sort u ∈ V in decreasing order by SO(u). . Eq. (4.14)
3: for u ∈ V do
4: if Mu = ∅ then
5: p← ∅ . p will be matched with u.
6: s← −∞ . s is the score associated with p.
7: for v ∈ Γ(u) do
8: if v 6= uand Mv = ∅and wu + wv < w(T) then
9: t← Sε(u, v) . Eq. (4.15)

10: if t > s then
11: s← t
12: p← v

13: if p 6= ∅ then
14: Mp ← u . Match u and p.
15: Mu ← p

16: Contract nodes according to M .

An additional implementation note is necessary for managing embedding be-

havior during the recursive bisection process of Zoltan, which identifies larger numbers

of partitions by iteratively solving the 2-partition problem on iterative halves of the

input hypergraph. Simply put, node indices during the recursive bisection process

are remapped to start at zero for each recursive partitioning call, which requires the

embedding singleton to access the logic of this routine. KaHyPar, in contrast, solves

the k-partitioning problem directly at the point of initial solution, and does not per-

form recursive bisection, and therefore does not require extra engineering. While

important for any wishing to implement embedding-based coarsening in the context

of recursive bisection, this technical detail does not modify the overall behavior of the

proposed algorithm.

76

Runtime Impacts. Embedding-based coarsening comes with two runtime

increases that are not present in the fast edge-wise coarsening that is typically used

by KaHyPar and Zoltan. Firstly, one must perform a graph embedding to learn ε.

Secondly, at each level of coarsening, we sort V in accordance to embedding-based

signals. Graph embedding, in general, is an expensive machine learning operation,

requiring significant time and memory to sample a graph and learn embeddings for

each node. However, because the proposed embedding-based coarsening algorithm is

independent of any particular embedding technique, the specific resources and time

needed to produce a graph embedding are subject to change. However, there are

a few broad patterns that most embedding methods follow. Graph embeddings are

learned from a set of samples. These samples can be the edges of the graph itself [139],

observations determined based on first- or second-order relationships [224, 228], or

random-walks of the graph [66, 88, 168]. In each case, the observation capturing

process is linear with respect to the size of the graph. Additionally, these observations

can often be collected in parallel. Next, the observations are formulated into batches

for a neural network to learn embeddings. Each observations is viewed once-per-

epoch, and effects the learned weights of a gain model. Therefore, the complexity of

training is equal to the size of the graph times the complexity of performing back-

propagation of a particular model. Embeddings can also be paralleled, both by GPU

acceleration, as well as through multi-node computation [176]. While the embedding

process overall is certainly expensive, the coarsening algorithm proposed in this work

only requires one embedding of the input graph as a prepossessing step. This may

not be feasible for applications that must partition thousands of midsize hypergraphs

daily, but is likely worth it for any application the relies more on the quality of the

resulting partition.

The second difference in runtime comes from the sorting used to prioritize

77

coarsening partners during each step of the proposed algorithm. At each iteration,

we visit each node to find its most-similar neighbor in terms of node embedding,

and then order nodes by this measure. In contrast, classical coarsening randomly

orders nodes before identifying partners. While this process introduces the overhead

of sorting, we find that removing randomness to prioritize self-similar hypergraph

regions can significantly improve partitioning quality while decreasing the quality

variance. In practice, many practitioners re-partition a hypergraph many times in

order to find the highest-quality partition. By incurring the cost of sorting, these

practitioners save the cost of multiple trials.

4.5 Experimental Design

We implement embedding-based coarsening in both KaHyPar [189] and Zoltan [62],

and compare the result quality against KaHyPar with community-based coarsen-

ing [100], KaHyPar with community-based coarsening and flow-based refinement [99],

Zoltan with standard coarsening [62], PaToH [47], and hMetis [115]. For both

KaHyPar and Zoltan with embedding-based coarsening, we compare embeddings

produced by Node2Vec [88], Metapath2Vec++ [66], FOBE and HOBE [224], as

well as a combined FOBE+HOBE embedding, and a combined Node2Vec, Meta-

path2Vec++, FOBE, and HOBE embedding. The combinations are trained using

the semi-supervised joint embedding technique also presented in [224], which merges

retrained embeddings through a combination of auto-encoding and link-predictive

objectives. We selected the FOBE and HOBE combination as this produces a high

quality embedding in prior work [224]. We then wanted to explore a new combina-

tion with the whole range of considered embeddings. Additionally, when comparing

performance of embedding-based coarsening within KaHyPar, we compare both with

78

and without flow-based refinement. Overall, we explore 18 different partitioning set-

tings with embedding-based coarsening, and five different partitioners with traditional

coarsening strategies.

For each of the 23 total partitioner configurations, we explore 96 total hyper-

graphs. Eighty-six of these are supplied by the SuiteSparse Matrix Collection [58].

These matrices span a range of domains including social networks, power grids, and

linear systems. We interpret each matrix H as the incidence matrix of a hypergraph.

In doing so, we consider each row to represent a node, each column to be a hyperedge,

and a nonzero value in Hij to indicate node j participates in hyperedge i. We addi-

tionally include ten synthetic hypergraphs that were designed to test the robustness of

the coarsening process, extending a similar approach from graphs [184]. These graphs

are a mixture of graphs that are weakly connected between each other, with less than

1% of edges connecting different graphs in the mixture. In multilevel setting, this can

cause the coarsening process to incorrectly contract edges between different graphs in

the mixture, resulting in uneven coarsening, overloaded refinement and worse quality

of the final solution. This structure can be found in many real-world graphs, includ-

ing multi-mode networks [229] and logistics multi-stage system networks [213]. We

introduce additional complexity by adding additional < 1% random edges (denoted

in the online appendix as “W/ Noise”). Full graphs, as well as scripts used to gener-

ate them are available in the online appendix. Summary statistics for each graph are

supplied in Table A.1.

For each partitioner and hypergraph combination, we explore both the “cut”

and the “connectivity” objective, which can influence the initial solution, as well as

some decisions during refinement across the considered benchmark3. Additionally,

3hMetis cannot optimize the “connectivity” objective, and is therefore omitted from that portion
of the analysis.

79

we explore a number of partitions (k) for powers of 2 from 2 to 128. For each

partitioner, objective, and k-value combination, we run at least twenty trials with

different random seeds in order to explore the stability of each scenario. Overall, we

compute over 500,000 different experimental trials across our wide benchmark, and

for each trial we record all relevant hyperparameters and quality results in a database

download supplied in our online appendix.

Metrics. In order to understand aggregate system performance, we report a range

of summary statistics for each proposed method. We are primarily concerned with

partitioning performance, as quantified by the value of the considered objective value

at the end of the multilevel paradigm. However, different hypergraphs have substan-

tially different optimal objective values. Therefore, we report improvement statistics

between two considered partitioners, with one acting as a baseline for the consider-

ation of the other. A value greater than 1 indicates a reduction in the considered

partitioner when compared to the baseline across the same hypergraphs.

Formally, if P is a partitioner configuration, including algorithm, embedding

method (if applicable), k, and objective function, and H is a hypergraph then let

P (H) be the resulting value of the objective function given H and a new random

seed. Then, let G be a summary statistic, such as mean, min, max, or standard

deviation. We apply G over τ trials of a given partitioner with the same input and

different random seeds. The improvement of P with respect to baseline method PB

for a single hypergraph is determined to be:

I(P, PB, G,H) =
G(PB(H)1, . . . , PB(H)τ)

G(P (H)1, . . . , P (H)τ)
(4.17)

Note that the formulation above places the baseline partitioner in the nu-

merator because an “improvement” is quantified as a decrease in objective value.

80

Therefore, if the proposed partitioner P produces consistently lower objective values

than PB, then I will be a number greater than 1.

When comparing two partitioners across the entire benchmark of hypergraphs

D, we compute the macro-summary. This means that we first apply the summary

statistic G to each hypergraph’s trials separately, before averaging the results to-

gether. Formally, the macro-summary is defined as:

I(P, PB, G) =
1

|D|
∑
H∈D

I(P, PB, G,H) (4.18)

When making these comparisons, we select P and PB pairs such that both

partitioners are optimizing the same number of partitions using the same objective.

Additionally, we explore summary functions G including mean, min, max, and stan-

dard deviation. While mean indicates average quality, min and max indicate worse-

and best-case performance, while the standard deviation explores the variance in the

resulting partitioners with respect to the random seed.

4.6 Results

We present a range of result summaries following the experimental design

discussed above. For a more in-depth look at our results, we present additional data

regarding each hypergraph, and each trial in our online appendix.

To begin our analysis, we summarize the performance improvement of each

embedding-based coarsening implementation compared to its respective baseline. For

instance, we compare KaHyPar with embedding-based coarsening, using FOBE em-

beddings, against KaHyPar using community-aware coarsening. We also compare

KaHyPar with flow-based refinement, as well as Zoltan with and without embedding-

81

(a) Average connectivity improvement.

Parts(k): 2 4 8 16 32 64 128
KaHyPar 8% 13% 10% 6% 4% 3% 1%
KaHyPar(flow) 9% 11% 4% 2% 3% 2% 0%
Zoltan 48% 28% 15% 14% 9% 5% 3%

(b) Average cut improvement.

Parts(k): 2 4 8 16 32 64 128
KaHyPar 8% 16% 9% 1% 3% 1% 0%
KaHyPar(flow) 10% 11% 3% 1% 1% 1% -1%
Zoltan 51% 45% 51% 41% 31% 14% 8%

Table 4.1: Improvement for each implementation of embedding-based coarsening
when compared to its corresponding baseline for both the “cut” and “connectiv-
ity” objectives. Results each use the FOBE embedding instance of embedding-based
coarsening. Performance numbers correspond to I macro-summaries (Eq. 4.18) where
G = mean.

based coarsening. These results are summarized using the macro-improvement statis-

tic I (Eq. 4.18), and with the trial summary statistic G = mean. Improvements as

a percentage for both “cut” and “connectivity” objectives for all considered numbers

of partitions (k) in Table 4.1.

The most striking result in this small collection of summaries is the inverse

relationship between improvement and k. As the number of partitions increases, the

advantage of embedding-based coarsening decreases. This is due to the manner that

we create interpolated embeddings for coarse nodes. As detailed in Section 4.4, when

a newly coarsened node is introduced at a new level of the coarsening process, it is

assigned an embedding equal to the average of the initial embeddings it contains.

This has the effect of “smoothing” the embedding space at the coarse level. As a

result of this smoothing, only major variances between nodes will be captured at the

point of initial solution. For instance, if a hypergraph structure has a set number of

key clusters, it is hard for embedding-based coarsening to identify anything else at

the coarsest level. Higher values of k, larger than the number of identified clusters,

82

therefore do not benefit from this technique.

Future work looking creating more useful coarse node representations is likely

to address this problem. However, simple solutions such as embedding coarse graph

instances has significant challenges. For instance, we find that small problem in-

stances result in poor embedding convergence across all considered embedding tech-

niques. Therefore we observed in initial trials, re-embedding coarse graphs dramat-

ically decreased result quality. Additionally, graph embeddings are computationally

expensive, and performing any non-constant number of embeddings is likely to be

infeasible for any real-world problem instance.

We continue our comparison of embedding-based coarsening across a range

of baselines in Figure 4.3. Here we compare Zoltan with embedding-based coars-

ening, KaHyPar with embedding-based coarsening and flow-based refinement (the

better performing KaHyPar implementation), against all baseline methods. We ad-

ditionally explore a range of summary statistics G including mean, best-case (min),

worse-case (max), and standard deviation. To easily compare all partitioners, we use

KaHyPar with flow-based refinement as the baseline (PB) for all methods. Therefore,

KaHyPar with flow always scores a one, denoted by the dashed line in each plot, and

an improvement over this baseline is indicated by a macro-improvement I greater

than one.

We observe a similar negative relationship between k and improvement across

the benchmark in Figure 4.3 as was seen in Table 4.1. When considering the con-

nectivity objective for k values of 2 and 4, we interestingly observe that both the

KaHyPar and Zoltan implementations with embedding-based coarsening outperform

the baseline. This is especially important for Zoltan, which greatly under performs

the baseline without our proposed coarsening. When looking at best-base perfor-

mance (G = max) we observe that the negative trends with respect with k is less

83

pronounced for KaHyPar and the connectivity objective. This trend demonstrates

the consistent ability of embedding-based coarsening to identify solutions that are of

a higher quality than any found by any considered baseline, and suggests that practi-

tioners willing to accept a quality-for-speed trade-off can find substantial performance

gains with our proposed technique.

Examining the standard deviation results shown in Figure 4.3, we observe

that embedding-based coarsening greatly improves the standard deviation of possible

results for a given hypergraph (shown where G = std). This decrease in variance

comes from the deterministic node-visit order, which replaces a typically random

ordering. As a result, the standard deviation of KaHyPar with embedding-based

coarsening can be reduced by over an order-of-magnitude in some cases. Because

many applications run multiple partitioning trials with various random seeds in order

to find a top-performing result [230], we find that this decrease in variance enables

these applications to run fewer trials while retaining the same confidence in their

performance.

Comparison with Community-aware Coarsening. Embedding-based coarsen-

ing attempts to merge together self-similar regions of the input hypergraph with re-

spect to the structural signals provided by node embeddings. In contrast, community-

aware coarsening restricts the contraction of nodes that do not share a cluster assign-

ment in the original hypergraph. While these two approaches are very similar, they

both promote contractions within self-similar regions of the original hypergraph, we

find that embedding-based coarsening is a more flexible constraint. Embedding-based

coarsening simply penalizes nodes that do not share structural features, but may still

merge seemingly dissimilar neighbors if no better options are found. Because of this

relaxation, we find that embedding-based coarsening outperforms community-aware

coarsening in a range of scenarios. This behavior, which we first report in aggregate

84

in Table 4.1, is explored in depth in Figure 4.4. In this example, each considered hy-

pergraph is listed, and graph-wise performance summaries I (Eq. 4.17) are depicted

for each. The specific properties of each graph are briefly summarized in Table A.1,

and more information regarding each hypergraph is available online.

In the summary table, we demonstrate that for low k-values, that embedding-

based coarsening can improve result quality over community-aware coarsening by

around 10% for k = 2, 4, 8. When viewing the per-hypergraph results, we see a

more detailed picture. Some hypergraphs with particularly useful structural fea-

tures, such as then hypergraph constructed from the enron email dataset, the eu

email dataset, or the difficult and noisy merged hypergraphs, can find partitioning

solutions with a connectivity objective that is between one half and one fourth of the

community-aware baseline. For many other graphs this improvement is a modest few

percentage points, while other graphs are relatively unchanged. For these graphs,

we find that the community-detection solution found by KaHyPar provides nearly

the same information as the selected graph embedding, leading to no improvement.

Only a small handful of graphs are substantially worsened by this proposed tech-

nique when compared to the community-aware baseline. For instance, Nemsemm2,

a sparse matrix corresponding to a linear program, is partitioned almost three-times

worse using embedding-based coarsening. The incidence matrix of this hypergraph

is nearly block-diagonal, which results in significant hyperedge-wise features that are

not translated into an embedding, as disjoint graph regions are often embedded in

overlapping spaces. In contrast, Nemswrld is another linear-program sparse matrix

published by the same group, but is less block-diagonal and receives an statistically

significant average improvement of about 33%.

Comparison Across All Partitioners. Our large table in Figure A.2 depicts the

average improvement of each proposed embedding-based coarsening partitioner con-

85

figuration against each baseline for the connectivity objective. The numbers in each

cell correspond to the macro-summary I using G = mean to summarize trials. For

space limitations, we only show this one large table, but online we present similar

tables for the cut objective, as well for the min, max, and standard-deviation sum-

marizes. Additionally, we include a per-hypergraph plot similar to Figure 4.4 for

each cell. When examining the included table, however, we see clear trends that are

replicated in each online table. All considered embeddings improve performance simi-

larly, with FOBE and HOBE performing marginally above the other methods in some

cases. We observe that Zoltan is the “easiest” baseline partitioner, while KaHyPar

with flow-based refinement is the most challenging. Because KaHyPar with flow-

based refinement produces higher quality partitions than Zoltan in prior work [99], it

is notable that some instances of Zoltan with embedding-based coarsening can achieve

similar quality.

When looking across the KaHyPar trials, we see that embedding-based coars-

ening without flow-based refinement can outperform community-aware coarsening

with the most expensive flow-based refinement. This result confirms the intuition,

initially discussed in Section 4.1, that the coarsening process one of the most funda-

mental operations in multilevel partitioning.

Across all considered implementations of embedding-based coarsening we still

observe a decrease in performance for larger values of k. As previously discussed,

this derives from the smoothed embedding space produced by iterative averages of

coarse nodes. It is worth noting that this smoothing effect produces results that are

most similar to KaHyPar with its broad community-aware coarsening. In contrast,

embedding-based coarsening still outperforms Zoltan and PatoH, partitioners that do

not account for global structural properties in a similar way.

86

Figure 4.3: The above depicts the relative performance of various partitioners, each
using KaHyPar with flow-based refinement as a baseline. The results correspond
to macro-summaries I (Eq. 4.18), where a value of 1, indicated by the horizontal
dashed line, is baseline performance of PB. We explore different summary statistics
G, including mean, max, min, and standard deviation.

87

Figure 4.4: The above depicts per-hypergraph summary statistics, I from
Eq. 4.17, comparing KaHyPar with embedding-based coarsening (P) to KaHyPar
with community-based coarsening (PB). We use the mean over trails as our summary
statistic G, as denoted by the height of each bar. A value higher than 1, which is
emphasized by the dashed line, indicates better solution quality. The small black bar
at the top of each graph indicates the standard deviation of trials, and the color of
each bar indicates the statistical significance, where a more saturated color indicates a
lower p-value. Hypergraph names are supplied across the horizontal axis, and graphs
are ordered by relative improvement.

88

4.7 Conclusion

We propose embedding-based coarsening, and approach that leverages global

structural features present in a pretrained hypergraph embedding in order improve

the solution quality of multilevel hypergraph partitioning. This approach prioritizes

self-similar regions of the hypergraph by visiting nodes in a deterministic order based

on the embedding properties of each node’s neighborhood. From there, embedding-

based coarsening matches nodes by a score that combines a more traditional edge-

wise inner-product with the dot product of node embeddings. We observe that the

introduction of embedding-based features provides a “time-breaking” mechanism that

ultimately preserves global structural features at the coarsest level in the V-cycle. We

implement our proposed coarsening strategy in both KaHyPar [189] and Zoltan [62].

We evaluate this approach over multiple trials per combination of 96 graphs,

7 partition counts, 6 pretrained embedding methods, 5 baseline partitioners, 3 im-

plementations, 2 objective functions and at least twenty trials per partitioner com-

bination. Overall this benchmark consists of over 500,000 experimental trials. All

experiments, plots and code are available in our online appendix at sybrandt.com/

2019/partitioning.

We observe a significant increase in quality for small values of k (from 2 to

16) gained from embedding-based coarsening. For higher values of k we observe

overall quality that returns to the state-of-the-art baseline. Furthermore, we find that

embedding-based coarsening improves partitioning quality significantly across a range

of scenarios in both the KaHyPar and Zoltan frameworks. Specifically, KaHyPar

with flow-based refinement [99] and embedding-based coarsening, using either FOBE

or HOBE [224] to produce node embedding, scores consistently higher on average

than all considered baselines. Furthermore, we find that by replacing the random

89

sybrandt.com/2019/partitioning
sybrandt.com/2019/partitioning

node visit order in many coarsening algorithms with a deterministic strategy that

prioritizes self-similar node pairs, we both improve solution quality while drastically

reducing solution variance, often by an order of magnitude. Large scale results for all

benchmarks and considered metrics is also available in the online appendix.

90

Chapter 5

Moliere: Automatic Biomedical

Hypothesis Generation System

Abstract

Hypothesis generation is becoming a crucial time-saving technique which al-

lows biomedical researchers to quickly discover implicit connections between impor-

tant concepts. Typically, these systems operate on domain-specific fractions of public

medical data. Moliere, in contrast, utilizes information from over 24.5 million doc-

uments and does not limit the document vocabulary. At the heart of our approach

lies a multi-modal and multi-relational network of biomedical objects extracted from

several heterogeneous datasets from the National Center for Biotechnology Informa-

tion (NCBI). These objects include but are not limited to scientific papers, keywords,

genes, proteins, diseases, and diagnoses. We model hypotheses using Latent Dirich-

let Allocation applied on abstracts found near shortest paths discovered within this

network. We demonstrate the effectiveness of Moliere by performing hypothesis

generation on historical data. Our network, implementation, and resulting data are

91

all publicly available for the broad scientific community.

5.1 Introduction

Vast amounts of biomedical information accumulate in modern databases such

as MEDLINE [162], which currently contains the bibliographic data of over 24.5 mil-

lion medical papers. These ever-growing datasets impose a great difficulty on re-

searchers trying to survey and evaluate new information in the existing biomedical

literature, even when advanced ranking methods are applied. On the one hand,

the vast quantity and diversity of available data has inspired many scientific break-

throughs. On the other hand, as the set of searchable information continues to grow,

it becomes impossible for human researchers to query and understand all of the data

relevant to a domain of interest.

In 1986 Swanson hypothesized that novel discoveries could be found by care-

fully studying the existing body of scientific research [221]. Since then, many groups

have attempted to mine the wealth of public knowledge. Efforts such as Swanson’s

own Arrowsmith generate hypotheses by finding concepts which implicitly link two

queried keywords. His method and others are discussed at length in Section 5.1.3.

Ideally, an effective hypothesis generation system greatly increases the productivity

of researchers. For example, imagine that a medical doctor believed that stem cells

could be used to repair the damaged neural pathways of stroke victims (as some did

in 2014 [92]). If no existing research directly linked stem cells to stroke victims, this

doctor would typically have no choice but to follow his/her intuition. Hypothesis

generation allows this researcher to quickly learn the likelihood of such a connection

by simply running a query. Our hypothetical doctor may query the topics stem cells

and stroke for example. If the system returned topics such as paralysis then not only

92

would the doctor’s intuition be validated, but he/she would be more likely to invest

in exploring such a connection. In this manner, an intelligent hypothesis generation

system can increase the likelihood that a researcher’s study yields usable new findings.

5.1.1 Our Contribution

We introduce a deployed system, Moliere, with the goal of generating more

usable results than previously proposed hypothesis generation systems. We develop a

novel method for constructing a large network of public knowledge and devise a query

process which produces human readable text highlighting the relationships present

between nodes.

To the best of our knowledge, Moliere is the first hypothesis generation

system to utilize the entire MEDLINE data set. By using state-of-the-art tools, such

as ToPMine [69] and FastText [34], we are able to find novel hypotheses without

restricting the domain of our knowledge network or the resulting vocabulary when

creating topics. As a result, Moliere is more generalized and yet still capable of

identifying useful hypotheses.

We provide our network and findings online for others in the scientific com-

munity. Additionally, to aid interested biomedical researchers, we supply an online

service where users can request specific query results at http://jsybran.people.

clemson.edu/mForm.php. Furthermore, Moliere is entirely open-source in order

to facilitate similar projects. See https://github.com/JSybrandt/MOLIERE for the

code needed to generate and query the Moliere knowledge network.

In the following chapter we describe our process for creating and querying a

large knowledge network built from MEDLINE and other NCBI data sources. We use

natural language processing methods, such as Latent Dirichlet Allocation (LDA) [31]

93

http://jsybran.people.clemson.edu/mForm.php
http://jsybran.people.clemson.edu/mForm.php
https://github.com/JSybrandt/MOLIERE

and topical phrase mining [69], along with other data mining techniques to concep-

tually link together abstracts and biomedical objects (such as biomedical keywords

and n-grams) in order to form our network. Using this network we can run short-

est path queries to discover a pathway between two concepts which are non-trivially

connected. We then find clouds of documents around these pathways which contain

knowledge representative of the path as a whole. PLDA+, a scalable implementation

of LDA [148], allows us to quickly find topic models in these clouds. Unlike similar

systems, we do not restrict PLDA+ to any set vocabulary. Instead, by using topical

phrase mining, we identify meaningful n-grams in order to improve the performance,

flexibility, and understandability of our LDA models. These models result in both

quantitative and qualitative connections which human researchers can use to inform

their decision making.

We evaluate our system by running queries on historical data in order to

discover landmark findings. For example, using data published on or before 2009,

we find strong evidence that the protein Dead Box RNA Helicase 3 (DDX3) can be

applied to treat cancer. We also verify the ability of Moliere to make predictions

similar to previous systems with restricted LDA [243].

5.1.2 Our Method in Summary

We focus on the domain of medicine because of the large wealth of public

information provided by the National Library of Medicine (NLM). MEDLINE is a

database containing over 24.5 million references to medical publications dating all

the way back to the late 1800s [162]. Over 23 million of these references include the

paper’s title and abstract text. In addition to MEDLINE, the NLM also maintains

the Unified Medical Language System (UMLS) which is comprised of three main

94

resources: the metathesaurus, the semantic network, and the SPECIALIST natural

language processing (NLP) tools. These resources, along with the rest of our data,

are described in section 5.2.1.

Our knowledge base starts as XML files provided by MEDLINE, from which

we extract each publication’s title, document ID, and abstract text. We first process

these results with the SPECIALIST NLP toolset. The result is a corpus of text which

has standardized spellings (for example “colour” becomes “color”), no stop words

(including medical specific stop words such as Not Otherwise Specified (NOS)), and

other characteristics which improve later algorithms on this corpus. Then we use

ToPMine to identify multi-word phrases from that corpus such as “asthma attack,”

allowing us to treat phrases as single tokens [69]. Next, we send the corpus through

FastText, the most recent word2vec implementation, which maps each unique token

in the corpus to a vector [153]. We can then fit a centroid to each publication and use

the Fast Library for Approximate Nearest Neighbors (FLANN) to generate a nearest

neighbors graph [159]. The result is a network of MEDLINE papers, each of which

are connected to other papers sharing a similar topic. This network, combined with

the UMLS metathesaurus and semantic network, constitutes our full knowledge base.

The network construction process is described in greater detail in Section 5.2.

With our network, a researcher can query for the connections between two

keywords. We find the shortest path between the two keywords in the knowledge

network, and extend this path to identify a significant set of related abstracts. This

subset contains many documents which, due to our network construction process,

all share common topics. We perform topic modeling on these documents using

PLDA+ [148]. The result is a set of plain text topics which represent different concepts

which likely connect the two queried keywords. More information about the query

process is detailed in Section 5.3.

95

We use landmark historical findings in order to validate our methods. For

example, we show the implicit link between Venlafaxine and HTR1A, and the in-

volvement of DDX3 on Wnt signaling. These queries and results are detailed in Sec-

tion 5.4. In Sections 5.5 and 5.6 we discuss challenges and open research questions

we have uncovered during our work.

5.1.3 Related Work

The study and exploration of undiscovered public knowledge began in 1986

with Swanson’s landmark paper [221]. Swanson hypothesized that fragments of in-

formation from the set of public knowledge could be connected in such a way as to

shed light on new discoveries. With this idea, Swanson continued his research to

develop Arrowsmith, a text-based search application meant to help doctors make

connections from within the MEDLINE data set [203, 218, 222]. To use Arrow-

smith, researchers supply two UMLS keywords which are used to find two sets of

abstracts, A and C. The system then attempts to find a set B ≈ A ∩ C. Assuming

sets A and C do not overlap initially, implicit textual links are used to expand both

sets until some sizable set B is discovered. The experimental process was computa-

tionally expensive, and queries were typically run on a subset of the MEDLINE data

set (according to [222] around 1,000 documents).

Spangler has also been a driving force in the field of hypothesis generation

and mining undiscovered public knowledge. His textbook [208] details many text

mining techniques as well as an example application related to hypothesis generation

in the MEDLINE data set. His research in this field has focused on p53 kinases

and how these undiscovered interactions might aid drug designers [209, 208]. His

method leverages unstructured text mining techniques to identify a network entities

96

and relationships from medical text. Our work differs from this paradigm by utilizing

the structured UMLS keywords, their known connections, and mined phrases. We

do, however, rely on similar unstructured text mining techniques, such as FastText

and FLANN, to make implicit connections between the abstracts.

Rzhetsky and Evans notice that current information gathering methods strug-

gle to keep up with the growing wealth of forgotten and hard to find information [72].

Their work in the field of hypothesis generation has included a study on the assump-

tions made when constructing biomedical models [64] and digital representations of

hypothesis [206].

Divoli et al. analyze the assumptions made in medical research [64]. They

note that scientists often reach contradictory conclusions due to differences in each

person’s underly assumptions. The study in [64] highlights the variance of these

preconceptions by surveying medical researchers on the topic of cancer metastasis.

Surprisingly, 27 of the 28 researchers surveyed disagree with the textbook process of

cancer metastasis. When asked to provide the “correct” metastasis scenario, none of

the surveyed scientists agree. Divoli’s study highlights a major problem for hypoth-

esis generation. Scientists often disagree, even in published literature. Therefore, a

hypothesis generation system must be able to produce reliable results from a set of

contradicting information.

In [206], Soldatova and Rzhetsky describe a standardized way to represent

scientific hypotheses. By creating a formal and machine readable standard, they en-

vision a collection of hypotheses which clearly describes the full spectrum of existing

theories on a given topic. Soldatova and Rzhetsky extend existing approaches by

representing hypotheses as logical statements which can be interpreted by Adam, a

robot scientist capable of starting one thousand experiments a day. Adam is success-

ful, in part, because they model hypotheses as an ontology which allows for Bayesian

97

inference to govern the likelihood of a specific hypothesis being correct.

DiseaseConnect, an online system that allows researchers to query for concepts

intersecting two keywords, is a notable contribution to hypothesis generation [145].

This system, proposed by Liu et al., is similar to both our system and Arrow-

smith [204] in its focus on UMLS keywords and MEDLINE literature mining. Unlike

our system, Liu et al. restrict DiseaseConnect to simply 3 of the 130 semantic types.

They supplement this subset with concepts from the OMIM [80] and GWAS [21]

databases, two genome specific data sets. Still, their network size is approximately

10% of the size of Moliere. DiseaseConnect uses its network to identify diseases

which can be grouped by their molecular mechanisms rather than symptoms. The

process of finding these clusters depends on the relationships between different types

of entities present in the DiseaseConnect network. Users can view sub-networks rel-

evant to their query online and related entities are displayed alongside the network

visualization.

Barabási et al. improve upon the network analytic approach to understand

biomedical data in both their work on the disease network [80] as well as their more

generalized symptoms-disease network [262]. In the former [80], the authors con-

struct a bipartite network of disease phonemes and genomes to which they refer to

as the Diseasome. Their inspiration is an observation that genes which are related

to similar disorders are likely to be related themselves. They use the Diseasome to

create two projected networks, the human disease network (HDN), and the Disease

Gene Network (DGN). In the latter [262], they construct a more generalized human

symptoms disease network (HSDN) by using both UMLS keywords and bibliographic

data. HSDN consists of data collected from a subset of MEDLINE consisting of

only abstracts which contained at least one disease as well as one symptom, a subset

consisting of approximately 850,000 records. From this set, Goh et al. calculated

98

keyword co-occurrence statistics in order to build their network. They validate their

approach using 1,000 randomly selected MEDLINE documents and, with the help

of medical experts, manually confirm that the relationship described in a document

is reflected meaningfully in HSDN. Ultimately, Goh et al. find strong correlations

between the symptoms and genes shared by common diseases.

Bio-LDA is a modification of LDA which limits the set of keywords to the

set present in UMLS [243]. This reduction improves the meaning and readability of

topics generated by LDA. Wang et al. also show in this work that their method can

imply connections between keywords which do not show up in the same document.

For example, they note that Venlafaxine and HTR1A both appear in the same topic

even though both do not appear in the same abstract. We explore and repeat these

findings in Section 5.4.2.

5.1.4 Related and Incorporated Technologies

FastText is the most recent implementation of word2vec from Milkolov et

al. [153, 155, 114, 34]. Word2vec is a method which utilizes the skip-gram model

to identify the relationships between words by analyzing word usage patterns. This

process maps plain text words into a high dimensional vector space for use in data

mining applications. Similar words are often grouped together, and the distances

between words can reveal relationships. For example, the distance between the words

“Man” and “Woman” is approximately the same as the distance between “King” and

“Queen”. FastText improves upon this idea by leveraging sub-strings in long rarely

occurring words.

ToPMine, a project from El-Kishky et al., is focused on discovering multi-

word phrases from a large corpus of text [86]. This project intelligently groups un-

99

igrams together to create n-gram phrases for later use in text mining algorithms.

By using a bag-of-words topic model, ToPMine groups unigrams based on their

co-occurrence rate as well as their topical similarity using a process they call Phrase

LDA.

Latent Dirichlet Allocation [31] is the most common topic modeling pro-

cess and PLDA+ is a scalable implementation of this algorithm [86, 148]. Developed

by Zhiyuan Liu et al., PLDA+ quickly identifies groups of words and phrases which

all relate to a similar concept. Although it is an open research question as to how

best to interpret these results, simple qualitative analysis allows for “ballpark” es-

timations. For instance, it may take a medical researcher to wholly understand the

topics generated from abstracts related to two keywords, but anyone can identify that

all words related to a concept of interest occur in the same topic. Results like this,

show that LDA has distinguished the presence of a concept in a body of text.

5.2 Knowledge Network Construction

In order to discover hypotheses we construct a large weighted multi-layered

network of biomedical objects extracted from NLM data sets. Using this network, we

run shortest-centroid-path queries (see Section 5.3) whose results serve as an input for

hypothesis mining. The wall clock time needed to complete this network construction

pipeline is depicted in Figure 5.1 (see details in Section 5.4.4). Omitted from this

figure is the time spent preprocessing the initial abstract text due to its embarrassingly

parallel nature.

100

Figure 5.1: Running times of each network construction phase. All phases run on
a single node described in section 5.4.4. Not shown:moliere: Initial text processing
which was handled by a large array of small nodes.

5.2.1 Data Sources

The NLM maintains multiple databases of medical information which are the

main source of our data. This includes MEDLINE [162], a source containing the

metadata of approximately 24.5 million medical publications since the late 1800’s.

Most of these MEDLINE records include a paper’s title, authors, publication date,

and abstract text.

In addition to MEDLINE, the NLM maintains UMLS [7], which in turn pro-

vides the metathesaurus as well as a semantic network. The metathesaurus contains

two million keywords along with all known synonyms (referred to as “atoms”) used in

medical text. For example, the keyword “RNA” has many different synonyms such as

“Ribonucleinicum acidum”, “Ribonucleic Acid”, and “Gene Products, RNA” to name

a few. These metathesaurus keywords form a network comprised of multi-typed edges.

For example, an edge may represent a parent - child or a boarder concept - narrower

101

concept relationship. RNA has connections to terms such as “Nucleic Acids” and

“DNA Synthesizers”. Lastly, each keyword holds a reference to an object in the se-

mantic network. RNA is an instance of the “Nucleic Acid, Nucleoside, or Nucleotide”

semantic type.

The UMLS semantic network is comprised of approximately 130 semantic types

and is connected in a similar manner as the metathesaurus. For example, the semantic

type “Drug Delivery Device” has an “is a” relationship with the “Medical Device”

type, and has a “contains” relationship with the “Clinical Drug” type.

MEDLINE, the metathesaurus, and the semantic network are represented in

our network as different layers. Articles which contain full text abstracts are repre-

sented as the abstract layer nodes A, keywords from the metathesaurus are repre-

sented as nodes in the keyword layer K, and items from the semantic network are

represented as nodes in the semantic layer S.

5.2.2 Network Topology

We define a weighted undirected graph underlying our networkN asG = (V,E),

where V = A∪K∪S. The construction of G was governed by two major goals. Firstly,

the shortest path between two indirectly related keywords should likely contain a sig-

nificant number of nodes in A. If instead, this shortest path contained only K − K

edges, we would limit ourselves to known information contained within the UMLS

metathesaurus. Secondly, conceptual distance between topics should be represented

as the distance between two nodes in N . This implies that we can determine the

similarity between i, j ∈ V by the weight of their shortest path. If ij ∈ E, this

would imply that exists a previously known relationship between i and j. We are in-

stead interested in connections between distant nodes, as these potentially represent

102

unknown information. Below we describe the construction of each layer in N .

Figure 5.2: Moliere network construction pipeline.

Figure 5.3: Moliere query pipeline.

5.2.3 Abstract Layer A

When connecting abstracts (A−A edges), we want to ensure that two nodes

i, j ∈ A with similar content are likely neighbors in the A layer. In order to do this,

we turned to the UMLS SPECIALIST NLP toolset [6] as well as ToPMine [69] and

FastText [34, 114]. Our process for constructing A is summarized in Figure 5.2.be-

low.

First, we extract all titles, abstracts, and associated document ID (referred to

as PMID within MEDLINE) from the raw MEDLINE files. We then process these

combined titles and abstracts with the SPECIALIST NLP toolset to standardize

spelling, strip stop words, convert to ASCII, and perform a number of other data

cleaning processes. We then use ToPMine to generate meaningful n-grams and

103

further clean the text. This process finds tokens that appear frequently together,

such as newborn and infants and combines them into a single token newborn infants.

Cleaning and combining tokens in this manner greatly increases the performance of

FastText, the next tool in our pipeline.

When running ToPMine, we keep the minimum phrase frequency and the

maximum number of words per phrase set to their default values. We also keep the

topic modeling component disabled. On our available hardware, the MEDLINE data

set can be processed in approximately thirteen hours without topic modeling, but

does not finish within three days if topic modeling is enabled. Because the resulting

phrases are of high quality even without the topic modeling component, we accept

this quality vs. time trade off. It is also important to note that we modify the version

of ToPMine distributed by El-Kishky in [69] to allow phrases containing numbers,

such as gene names like p53.

Next, FastText maps each token in our corpus to a vector v ∈ Rd, allowing

us to fit a centroid per abstract i ∈ A. Using a sufficiently high-dimensional space

ensures a good separation between vectors. In other words, each abstract i ∈ A is

represented in Rd as ci = 1/k ·
∑k

j=1 xj, where xj are FastText vectors of k keywords

in i.

We choose to use the skipgram model to train FastText and reduce the

minimum word count to zero. Because our data preprocessing and ToPMine have

already stripped low support words, we accept that any n-gram seen by FastText

is important. Following examples presented in [153, 155, 114] and others, we set

the dimensionality of our vector space d to 500. This is consistent with published

examples of similar size, for example the Google news corpus processed in [153].

Lastly, we increase the word neighborhood and number of possible sub-words from

five to eight in order to increase data quality.

104

Finally, we used FLANN [159] to create nearest neighbors graph from all

i ∈ A in order to establish A − A edges in E. This requires that we presuppose a

number of expected nearest neighbors per abstract k. We set this tunable parameter

to ten initially and noticed that this value seemed appropriate. By studying the

distances between connected abstracts, we observed that most abstracts had a range

of very close and relatively far “nearest neighbors”. For our purposes in these initial

experiments, we kept k = 10 and saw promising results. Due to time and resource

limitations, we were unable to explore higher values of k in this study, but we are

currently planning experiments where k = 100 and k = 1000. It is important to note

that the resulting network will have ≈ k(2.3 × 107) edges, so there is a considerable

trade-off between quality vs. space and time complexity.

After experimenting with both L2 and normalized cosine distances, we ob-

served that L2 distance metric performs significantly better for establishing connec-

tions between centroids. Unfortunately, we cannot utilize the k-tree optimization in

FLANN along with non-normalized cosine distance, making it computationally in-

feasible a dataset of our size. This is because the k-tree optimization requires an

agglomerative distance metric. Lastly, we scale edges to the [0, 1] interval in order to

relate them to other edges within the network.

5.2.4 Keyword Layer K

The K layer is imported from the UMLS metathesaurus. Each keyword is

referenced by a CUI number of UMLS. This layer links keywords which share already

known connections. These known connections are K − K edges. The metathesaurus

connections link related words; for example, the keyword “Protine p53” C0080055

is related to “Tumor Suppressor Proteins” C0597611 and “Li-Fraumeni Syndrome”

105

C0085390 among others. There exist 14 different types of connections between key-

words representing relationships such as parent - child or broader concept - narrower

concept. We assign each a weight in the [0, 1] interval corresponding to its relevance,

and then scale all weights by a constant factor σ so the average A − A edge are is

stronger than the average K − K edge. The result is that a path between two indi-

rectly related concepts will more likely include a number of abstracts. We selected

σ = 2, but more study is needed to determine the appropriate edge weights within

the keyword layer.

5.2.5 A−K Connections

In order to create edges between A and K, we used a simple metric of term

frequency-inverse document frequency (tf-idf). UMLS provides not only a list of

keywords, but all known synonyms for each keyword. For example, the keyword Color

C0009393 has the American spelling, the British spelling, and the pluralization of

both defined as synonyms. Therefore we used the raw text abstracts and titles (before

running the SPECIALIST NLP tools) to calculate tf-idf. In order to quickly count all

occurrences of UMLS keywords across all synonyms, we implemented a simple parser.

This was especially important because many keywords in UMLS are actually multi-

word phrases such as “Clustered Regularly Interspaced Short Palindromic Repeats”

(a.k.a. CRISPR) C3658200.

In order to count these keywords, we construct a parse tree from the set of

synonyms. Each node in the tree contains a word, a set of CUIs, and a set of children

nodes, with the exception of the root which contains the null string. We build this tree

by parsing each synonym word by word. For each word, we either create a new node

in the tree, or traverse to an already existing child node. We store each synonym’s

106

CUI in the last node in its parse path. Then, to parse a document, we simply traverse

the parse tree. This can be done in parallel over the set of abstracts. For each word

in an abstract, we move from the current tree node to a child representing the same

word. If none exists, we return to the root node. At each step of this traversal, we

record the CUIs present at each visited node. In this manner, we get a count of

each CUI present in each abstract. Our next pass aggregates these counts to discover

the total number of usages per keyword across all abstracts. We calculate tf-idf per

keyword per abstract. Because our network’s weights represent distance, we take the

inverse of tf-idf to find the weight for an A−K edge. This is done simply by dividing

a CUI’s count across all abstracts by its count in a particular abstract. By calculating

weights this way, abstracts which use a keyword more often will have a lower weight,

and therefore, a shorter distance. We scale the edge weights to the [0, σ] interval so

that these edges are comparable to those within the A and K layers.

5.2.6 Semantic Layer S

The UMLS supplies a companion network referred as the semantic network.

This network consists of semantic types, which are overarching concepts. These

“types” are similar to the function of a “type” in a programming language. In other

words, it is a conceptual entity embodied by instantiations of that type. In the UMLS

network, elements of K are analogous to the instantiations of semantic types. While

there are over two million elements of K, there are approximately 130 elements in S.

For example, the semantic type Disease or Syndrome T047 is defined as “A condition

which alters or interferes with a normal process, state, or activity of an organism” [7].

There are thousands of keywords, such as “influenza” C0021400 that are instances

of this type.

107

The S−S edges are connected similarly to K−K edges. The overall structure

is hierarchical with “Event” T051 and “Entity” T071 being the most generalized

semantic types. Cross cutting connections are also present and can take on approx-

imately fifty different forms. These cross cutting relations also form a hierarchy of

relationship types. For example, “produces” T144 is a more specific relation than its

parent “brings about” T187.

We initially included S in our network by linking each keyword to its cor-

responding semantic type. Unfortunately, in our early results we found that many

shortest paths traversed through S rather than through A. For example, if we were

interested in two diseases, it was possible for the shortest path would simply travel to

the “Disease or Syndrome” T047 type. This ultimately degraded the performance of

our hypothesis generation system. As a result we removed this layer, but that further

study may find that careful choice of S −S and K−S connection weights may make

S more useful. This is further discussed in Section 5.5.

5.3 Query Process

The process of running a query within Moliere is summarized in Figure 5.3.

Running a query starts with the user selecting two nodes i, j ∈ V (typically, but

not necessarily, i, j ∈ K). For example, a query searching for the relationship be-

tween “stem cells” and “strokes” would be input as keyword identifiers C0038250

and C1263853, respectively. This process simplifies our query process, but determin-

ing a larger set of keywords and abstracts which best represents a user’s search query

is a future work direction.

After receiving two query nodes i and j, we find a shortest path between them,

(ij)s, using Dijkstra’s algorithm. These paths typically are between three and five

108

nodes long and contain up to three abstracts (unless the nodes are truly unrelated,

see Section 5.4.1). We observed that when (ij)s contains only two or three nodes in

K, that the ij relationship is clearly well studied because it was solely supplied by the

UMLS layer K. We are more interested in paths containing abstracts because these

represent keyword pairs whose relationships are less well-defined. Still, the abstracts

we find along these shortest paths alone are not likely to be sufficient to generate a

hypothesis.

5.3.1 Hypothesis Modeling

Broadening (ij)s consists of two main phases, the results of which are depicted

in Figure 5.4. First, we select all nodes S = (ij)s∩A. These abstracts along the path

(ij)s represent papers which hold key information relating two unconnected keywords.

We find a neighborhood around S using a weighted breadth-first traversal, selecting

the closest 1,000 abstracts to S. We will call this set N . Because A was constructed

as a nearest neighbors graph, it is likely that the concepts contained in N will be

similar to the concepts contained in S, which increases the likelihood that important

concepts will be detected by PLDA+ later in the pipeline.

Next, we identify abstracts with contain information pertaining to the K−K

connections present in (ij)s. We do so in order to identify abstracts which likely

contain concepts which a human reader could use to understand the known relation-

ship between two connected keywords. We start by traversing (ij)s to find α, β ∈ K

such that α and β are adjacent in (ij)s. From there, we find a set of abstracts

C = {c : cα ∈ E ∧ cβ ∈ E}. That is, C is a subset of abstracts containing both key-

words α and β. Because (ij)s can have many edges between keywords, and because

thousands of abstracts can contain the same two keywords, it is important to limit

109

Figure 5.4: Process of extending a path to a cloud of abstracts.

the size of C.

This process creates a set of around 1,300 A-nodes. This set will typically

contain around 15,000-20,000 words and is large enough for PLDA+ to find topics.

We run PLDA+ and request 20 topics. We find this provides a sufficient spread in

our resulting data sets. The trained model generated by PLDA+ is what is eventually

returned by our query process.

For our experiments, we often must process tens of thousands of results and

thus must train topic models quickly. This is most apparent when running a one-to-

many query such as the drug repurposing example in 5.4.3. Additionally, the training

corpus returned from a Moliere query is often only a couple thousand documents

large. As a result, we set the number of topics and the number of iterations to

relatively small values, 20 and 100 respectively. Because we store intermediary results,

it is trivial to retrain a topic model if the preliminary result seems promising.

The process of analyzing a topic model and uncovering a human interpretable

sentence to describe a hypothesis is still a pressing open problem. The process as

stated here does have some strong benefits which are apparent in Section 5.4. These

include the ability to find correlations between medical objects, such as between a

drug and multiple genes. In Section 5.6 we explain our initial plans to improve the

quality of results which can be deduced from these topic models.

110

5.4 Experiments

We conduct two major validation efforts to demonstrate our system’s potential

for hypothesis generation. For each of these experiments we use the same set of

parameters for our trained model and network weights. Our initial findings show our

choices, detailed in Section 5.2, to be robust. We plan to refine these choices with

methods described in Section 5.6.

We repeat an experiment done by Wang et al. in [243] wherein we discover

the implicit connections between the drug Venlafaxine and the genes HTR1A and

HTR2A. We also perform a large scale study of Dead Box RNA Helicase 3 (DDX3)

and its connection to cancer adhesion and metastasis. Each of these experiments is

described in greater detail in the following sections. In this chapter, we deliberately

do not evaluate our experiments with extremely popular objects such as p53. These

objects are so highly connected within K that hypothesis generation involving these

keywords is easy for many different methods.

5.4.1 Network Profile

We conduct our experiments on a very large knowledge graph which has been

constructed according to Section 5.2. We initially created a network N containing

information dating up to and including 2016. This network consists of 24,556,689

nodes and 989,169,295 edges. The network overall consists of largest strongly con-

nected component containing 99.8% of our network. The average degree of a node

in N is 79.65, and we observe a high clustering coefficient of 0.283. These metrics

cause us to expect that the shortest path between two nodes will be very short. Our

experiments agree, showing that most shortest paths are between three and six nodes

long.

111

5.4.2 Venlafaxine to HTR1A

Wang et al. in [243] use a similar topic modeling approach, and find during

one of their experiments that Venlafaxine C0078569 appears in the same topic as the

HTR1A and HTR2A genes (C1415803 and C1825553 respectively). When looking

into these results, they find a stronger association between Venlafaxine and HTR1A.

This finding is important because Venlafaxine is used to treat depressive disorder and

anxiety, which HTR1A and HTR2A have been thought to affect, but as of 2009 no

abstract contains this link. As a result, this implicit connection is difficult to detect

with many existing methods.

Results: As a result of running two queries, Venlafaxine to HTR1A, and Venlafaxine

to HTR2A, we can corroborate the findings of Wang et al. in [243]. We find that

neither pair of keywords is directly connected or connected through a single abstract.

Nevertheless, phrases such as “long term antidepressant treatment,” “action antide-

pressants,” and “antidepressant drugs” are all prominent keywords in the HTR1A

query. Meanwhile, the string “depress” only occurs four times in unrelated phrases

with the HTR2A results. The distribution of depression related keywords from both

queries can be see in figure 5.5.

Similarly, our results for HTR1A contain a single topic holding the phrases

“anxiogenic,” “anxiety disorders,” “depression anxiety disorders,” and “anxiolytic

response.” In contrast, our HTR2A results do not contain any phrases related to

anxiety. The distribution of anxiety related keywords from both queries can be see

in figure 5.6.

Our findings agree with those of Wang et al. which were that a small asso-

ciation score of 0.34 between Venlafaxine and HTR1A indicates a connection which

is likely related to depressive disorder and anxiety. The association score between

112

Figure 5.5: Distribution of n-grams having to do with depression from Venlafaxine
queries.

Venlafaxine and HTR2A, in contrast, is a much higher 4.0. This indicates that the

connection between these two keywords is much weaker.

5.4.3 Drug Repurposing and DDX3’s Anti-Tumor Applica-

tions

Many genes are active in multiple cellular processes and in many cases they

are found to be active outside of the original area in which the gene was initially

discovered. The prediction of new processes is especially important for repurposing

existing drugs (or drug target genes) to a new application [16, 165, 12]. As an example,

the drugs developed for the treatment of infectious diseases were recently repurposed

for cancer treatment. Extending applications of existing drugs provides a tremendous

opportunity for the development of cost-effective treatments for cancers and other

113

Figure 5.6: Distribution of n-grams having to do with anxiety from Venlafaxine
queries.

life-threatening diseases.

To estimate the predictive value of our system for the discovery of new appli-

cations of small molecules we select Dead Box RNA Helicase 3 (DDX3) C2604356.

DDX3 is the member of Dead-box RNA helicase and was initially discovered to be a

regulator of transcription and propagation of Human Immunodeficiency Virus (HIV)

as well as ribosomal biogenesis. Initially, DDX3 was a target for the development of

anti-viral therapy for the AIDS treatment [129, 151].

More recently, DDX3 activity was found to be involved cancer development

and progression mainly through regulation of the Wnt signaling pathway [57, 255]

and associated regulation of Cell-cell and Cell-matrix adhesion, tumor cells invasion,

and metastasis [49, 215, 234, 126]. Currently, DDX3 is an established target for anti-

tumor drug development [35, 186, 36] and represents a case for repurposing target

114

anti-viral drugs into the application area of anti-tumor therapy.

To test this hypothesis, we analyze the data available on and before 12/31/2009,

when no published indication of links in between DDX3 and the Wnt signaling were

available. We compare DDX3 to all UMLS keywords containing the text “signal

transduction”, “transcription”, “adhesion”, “cancer”, “development”, “translation”,

or “RNA” in their synonym list. This search results in 9,905 keywords over which we

query for relationships to DDX3. From this large set of results we personally analyze

a subset of important pairs.

Results: In our generated dataset, we found following text grouping within topics:

“substrate adhesion,” “RGD cell adhesion domain,” “cell adhesion factor,” “focal ad-

hesion kinase” which are indicative for the cell-matrix adhesion. The topics “cell-cell

adhesion,” “regulation of cell-cell adhesion,” “cell-adhesion molecules” indicate the

involvement of DDX3 into cell-cell adhesion regulation. The involvement of adhe-

sion is associated with topics related to tumor dissemination: “ Collaborative staging

metastasis evaluation Cancer,” “metastasis adhesion protein, human,” “metastasis

associated in colon cancer 1” (selected in between others similar topics).

The results above suggested that through analysis of the ≤2009 dataset we can

predict the involvement of DDX3 in tumor cell dissemination through the effects of

Cell-cell and cell-matrix adhesion. Next, we analyzed, whether it will be possible to

made inside of the mechanisms of DDX3-dependent regulation of Wnt signaling. As

shown recently, DDX3 involvement on Wnt signaling is based on the regulated Casein

kinase epsilon, to affect phosphorylation of the disheveled protein. Although we can-

not predict the exact mechanism of DDX3 based on ≤2009 dataset, the existence of

multiple topics of signal-transduction associated kinases, like “CELL ADHESION KI-

NASE”, “activation by organism of defense-related host MAP kinase-mediated signal

transduction pathway”, “modulation of defense-related symbiont mitogen-activated

115

protein kinase-mediated signal transduction pathway by organism”, suggested the

ability of DDX3 to regulate kinases activities and kinase-regulated pathways.

5.4.4 Experimental Setup

We performed all experiments on a single node within Clemson’s Palmetto

supercomputing cluster. To perform our experiments and construct our network, we

use an HP DL580 containing four Intel Xeon x7542 chips. This 24 core node has

500 GB of memory and access to a large ZFS-based file system where we stored

experimental data.

For the DDX3 queries, we initially searched for all (ij)s where i = DDX3

and j ∈ K. This resulted in 1,350,484 shortest paths with corresponding abstract

clouds. We used PLDA+ to construct models for all of these paths. Discovering

all (ij)s completed in almost 10 hours of CPU time, and training the respective

models completed in slightly over 68 hours of CPU time. We ran PLDA+ in parallel,

resulting in a wall time of only 12 hours. As mentioned previously, this large dataset

was filtered to the 9,905 paths we are interested in.

We generate the results for the Venlafaxine experiments in one hour of CPU

time, which is mostly spent loading our very large network and then running Dijkstra’s

algorithm. After this, the two resulting PLDA+ models were trained in parallel within

a minute.

5.5 Deployment Challenges

In the following section we detail the challenges which we have faced and are

expecting to encounter while creating our system and deploying it to the research

community.

116

Dynamic Information Updates The process of creating our network is computa-

tionally expensive and for the purposes of validation we must create multiple instances

of our network representing different points in time. Initially we would have liked to

create these multiple instances from scratch, starting from the MEDLINE archival

distribution and rebuilding the network from there. Unfortunately, this proved infea-

sible because creating a single network is a time consuming process. Instead, we filter

our network by removing abstracts and keywords which were published after our select

date. Additionally, the act of adding information to our network, such as extending

the 2016 network to create a 2017 network, is not straightforward. Ideally, adding a

small number abstracts or keywords should be a fast and dynamic process which only

affects localized regions of the network. If this were so, our deployed system could

take advantage of new ideas and connections as soon as they are published.

A deployed system could support dynamic updates with an amortized ap-

proach. Using previously created FastText and ToPMine models, new documents

could be fitted into an existing network with suitably high performance. Of course, if

a new document introduced a new keyword or phrase, we would be unable to detect it

initially. After some threshold of new documents had been added to the network, we

could then rerun the entire network construction process to ensure that new keywords,

phrases, and concepts would be properly placed in the network.

Query Platform and Performance: Initially, we expected to use a graph database

to make the query process easier. We surveyed a selection of graph databases and

found that Neo4j [61] provides a powerful query language as well as a platform capable

of holding our billion-edge network. Unfortunately, Neo4j does not easily support

weighted shortest path queries. Although some user suggestions did hint that it may

be possible, the process requires leveraging edge labels and custom java procedures

in a way that did not seem scalable. In place of Neo4j, we implemented Dijkstra’s

117

shortest path algorithm in C++ using skew heaps as the internal priority queue.

This implementation was chosen to minimize memory usage while maximizing speed

and readability. Because we implemented Dijkstra’s algorithm ourselves, we can also

combine the process of finding a shortest path and finding all neighboring abstracts

for all keywords from a specific source. With only these high level optimizations, we

were able to generate over 1,350,000 shortest paths and abstract neighborhoods in

under ten hours, but generating a single result takes slightly over one hour.

5.6 Lessons Learned and Open Problems

Specialized LDA: During last two decades there has been a number of significant

attempts to design automatic hypothesis generation systems [208, 218, 243]. How-

ever, most of these improve their performance by restricting either their information

space or the size of their dictionary. For example, specialized versions of LDA such

as Bio-LDA [243] uncover latent topics using a dictionary that gives a priority to

special terms. We find that such approaches are helpful when general language may

significantly over weigh a specialized language. However, phrase mining approaches

that recover n-grams, such as [69], produce accurate methods without limiting the

dictionary.

Hypothesis Viability and Novelty Assessment: Intuitively, a strong connection

between two concepts in N means that there exist a significant amount of research

that covers a path between them. Similar observations are valid for LDA, i.e., latent

topics are likely to describe well known facts. As a result, the most meaningful

connections and interpretable topical inference are discovered with latent keywords

that are among the most well known concepts. However, real hypotheses are not

necessarily described using the most latent keywords in such topic models. In many

118

cases, the keywords required for a successful and interpretable hypothesis start to

appear among 20-30 most latent topical keywords. Thus, a major open problem

related is the process to which one should select a combination of keywords and

topics in order to represent a viable hypothesis. This problem is also linked to the

problem of assessing the viability of a generated hypothesis.

These problems, as well as the problem of hypothesis novelty assessment, can

be partially addressed by using the Dynamic Topic Modeling (DTM) [30]. Our prelim-

inary experiments with scalable time-dependent clustered LDA [87] that significantly

accelerates DTM demonstrate a potential to discover dynamic topics in MEDLINE.

The dynamic topics are typically more realistic than those that can be discovered in

the static network. This significantly simplifies the assessment of viability and topic

noise elimination.

Incorporating the Semantic Layer S: In section 5.2.6 we describe the process

in which we evaluated the UMLS semantic network and found that it worsened our

resulting shortest path queries. Further work could improve the contribution that

S has on our overall network, possibly allowing S to define the overall structure

of our knowledge graph. In order to do this, one would likely need to take into

account the hierarchy of relationship types present in this network, as well as the

relative relationship each element in K has with its connection in S. Ultimately, these

different relationships would need to inform a weighting scheme that balances the over

generalizations that S introduces. For example, it may be useful to understand that

two keywords are both diseases, but it is much less useful to understand that two

keywords are “entities”.

Learning the Models of Hypothesis Generation: There is surprisingly little re-

search focused on addressing the process of biomedical research and how that process

evolves over time. We would like to model the process of discovery formation, tak-

119

ing into account the information context surrounding and preceding a discovery. We

believe we could do so by reverse engineering existing discoveries in order to discover

factors which altered the steps in a scientist’s research pipeline. Several promising

observations in this direction have been done by Foster et al. [78] who examined this

through Bourdieu’s field theory of science by developing a typology of research strate-

gies on networks extracted from MEDLINE. However, instead of reverse engineering

their models, they separate innovation steps from those that are more traditional in

the research pipeline.

Dynamic Keyword Discovery: One of the limitations we found when performing

our historical queries is the delay between the first major uses of a keyword and its

appearance in the UMLS metathesaurus. Initially, we planned to study the relation-

ship between “CRISPR” C3658200 and “genome editing” C4279981. To our surprise,

many keywords related to this query did not exist in our historical networks between

2009 and 2012, despite their frequent usage in cutting-edge research during that time.

To further confuse the issue, although the keyword “CRISPR” did not appear in the

UMLS releases on or before 2012, keywords containing “CRISPR” as a substring,

such as “CRISPR element metabolism” C1752766, do appear. We find this to be

contradictory and that these inconsistencies highlight the limitation of relying on so

strongly on keyword databases. Going forward, we plan to devise a way to extend

a provided keyword network, utilizing semantic connections we can find within the

MEDLINE document set. Projects like [209] have already shown this method can

work in domains of smaller scales with good results. The challenge will be to extend

this method to perform well when used on the entire MEDLINE data set.

Improving Performance of Algorithms with Graph Reordering Techniques:

Cache-friendly layouts of graphs are known to generally accelerate the performance of

the path and abstract retrieval algorithms which we apply. Moreover, it is desirable to

120

consider this type of acceleration in order to make our system more suitable for regular

modern desktops. This is an important consideration as memory is not expected to

be a major bottleneck after the network is constructed. We propose to rearrange the

network nodes by minimizing such objectives as the minimum logarithmic or linear

arrangements [185, 183]. On a mixture of K−K, A−K, and A−A edges we anticipate

an improvement of at least 20% in the number of cache misses according to [182].

Mass Evaluation: We note that evaluation techniques are largely an issue in the

state of the art of hypothesis generation. While some works feature large scale evalua-

tion performed by many human experts, a majority, this work included, are restricted

to only a couple of promising results to justify the system. In order to better eval-

uate and compare hypothesis generation techniques we must devise a common and

large scale suite of historical hypotheses. We are currently evaluating whether a

ground-truth network, like the drug-side-effect network SIDER [136], can be a good

source of such hypotheses. For example, if we identify a set of recently added connec-

tions within SIDER, and predict a substantial percentage of those connections using

Moliere, then we may be more certain of our performance.

New Domains of Interest: We have considered other domains on which Moliere

may perform well. These include generating hypotheses regarding economics, patents,

narrative fiction, and social interactions. These are all domains where a hypothesis

would involve finding new relationships between distinct entities. We contrast this

with domains such as mathematics where the entity-relationship network is much less

clear, and logical approaches from the field of automatic theorem proving are more

applicable.

121

5.7 Conclusions

In this study we describe a deployed biomedical hypothesis generation system,

Moliere, that can discover relationship hypotheses among biomedical objects. This

system utilizes information which exists in MEDLINE and other NLM datasets. We

validate Moliere on landmark discoveries using carefully filtered historical data.

Unlike several other hypothesis generation systems, we do not restrict the information

retrieval domain to a specific language or a subset of scientific papers since this method

can lose an unpredictable amount of information. Instead, we use recent text mining

techniques that allow us to work with the full heterogeneous data at scale. We

demonstrate that Moliere successfully generates hypotheses and recommend using

it to advance biomedical knowledge discovery. Going forward, we note a number of

directions along which we can improve Moliere as well as many existing hypothesis

generation systems.

5.8 Acknowledgments

We would like to thank Dr. Lihn Ngo for his help in using the Palmetto

supercomputer which ran our experiments, and Cong Qiu for initial experiments

with Neo4j.

122

Chapter 6

Large-Scale Validation of

Hypothesis Generation Systems

via Candidate Ranking

Abstract

The first step of many research projects is to define and rank a short list of

candidates for study. In the modern rapidity of scientific progress, some turn to au-

tomated hypothesis generation (HG) systems to aid this process. These systems can

identify implicit or overlooked connections within a large scientific corpus, and while

their importance grows alongside the pace of science, they lack thorough validation.

Without any standard numerical evaluation method, many validate general-purpose

HG systems by rediscovering a handful of historical findings, and some wishing to

be more thorough may run laboratory experiments based on automatic suggestions.

These methods are expensive, time consuming, and cannot scale. Thus, we present a

numerical evaluation framework for the purpose of validating HG systems that lever-

123

ages thousands of validation hypotheses. This method evaluates a HG system by

its ability to rank hypotheses by plausibility; a process reminiscent of human candi-

date selection. Because HG systems do not produce a ranking criteria, specifically

those that produce topic models, we additionally present novel metrics to quantify

the plausibility of hypotheses given topic model system output. Finally, we demon-

strate that our proposed validation method aligns with real-world research goals by

deploying our method within Moliere, our recent topic-driven HG system, in order

to automatically generate a set of candidate genes related to HIV-associated neu-

rodegenerative disease (HAND). By performing laboratory experiments based on this

candidate set, we discover a new connection between HAND and Dead Box RNA

Helicase 3 (DDX3).

6.1 Introduction

In the early stages of a research project, biomedical scientists often perform

“candidate selection,” wherein they select potential targets for future study [107].

For instance, when exploring a certain cancer, scientists may identify a few dozen

genes on which to experiment. This process relies on the background knowledge

and intuitions held by each researcher, and higher-quality candidate lists often lead

to more efficient research results. However, the rate of scientific progress has been

increasing steadily [233], and occasionally scientists miss important findings. for in-

stance, was the case regarding the missing connection between Raynaud’s Syndrome

and fish oil [219], and in the case of five genes recently linked to Amyotrophic Lat-

eral Sclerosis [18]. Hypothesis Generation (HG) systems allow scientists to leverage

the cumulative knowledge contained across millions of papers, which lead to both

above findings, among many others. The importance of these systems rises along-

124

side the pace of scientific output; an abundance of literature implies an abundance

of overlooked connections. While many propose techniques to understand potential

connections [243, 225, 145, 221, 208], few automated validation techniques exist [41]

for general-purpose HG systems (not designed for specific sub-domains or types of

queries such as OHSUMED [98] or BioCreative datasets). Often, subject-matter

experts assist in validation by running laboratory experiments based on HG system

output. This process is expensive, time consuming, and does not scale beyond a

handful of validation examples.

HG systems are hard to validate because they attempt to uncover novel in-

formation, unknown to even those constructing or testing the system. For instance,

how are we to distinguish a bizarre generated hypothesis that turns out to produce

important results from one that turns out to be incorrect? Furthermore, how can we

do so at scale or across fields? While there are verifiable models for novelty in spe-

cific contexts, each is trained to detect patterns similar to those present in a training

set, which is conducive to traditional cross-validation. Some examples include using

non-negative matrix factorization to uncover protein-protein interactions [84], or to

discover mutational cancer signatures [11]. However, HG is unlike the above examples

as it strives to detect novel patterns that are a) absent from a dataset, b) may be

wholly unknown or even currently counterintuitive, and c) not necessarily outliers as

in traditional data mining.

Our contribution: In this chapter we propose novel hypothesis ranking

methods and a method to validate HG systems that does not require expert input and

allows for large validation sets. This method judges a system by its ability to rank

hypotheses by plausibility, similarly to how a human scientist must rank potential

research directions during candidate selection. We start by dividing a corpus based

on a “cut date,” and provide a system only information that was priorly available.

125

Then, we identify predicates (clauses consisting of subject, verb, and object) whose

first co-occurrence in a sentence is after the cut date. Because typical corpora contain

only titles and abstracts, these recently introduced connections represent significant

findings that were not previously formulated, thus we can treat them as surrogates for

plausible hypotheses from the perspective of the system under evaluation. To provide

implausible hypotheses, we randomly generate predicates that do not occur in the

corpus as a whole. Then, the HG system must rank both the plausible and implausi-

ble predicates together by evaluating the predicted connection strength between each

predicate’s subject and object. The system’s evaluation is based on the area under

this ranking’s Receiver Operating Characteristic (ROC) curve, wherein the highest

area under curve (AUC) of 1 represents a ranking that places all plausible connections

above the implausible, and the lowest AUC of 0.5 represents an even mixture of the

two.

We note that many HG systems do not typically produce a ranking criteria

for potential hypotheses. Particularly, we find that those systems that produce topic

model output, such as Moliere [225] or BioLDA [243], lack this criteria, but present

promising results through expert analysis. Therefore, we additionally developed a

number of novel metrics for topic-driven HG systems that quantify the plausibility

of potential connections. These metrics leverage word embeddings [153] to under-

stand how the elements of a hypothesis relate to its resulting LDA topic model [31].

Through our experiments, described below, we identify that a polynomial combi-

nation of five different metrics allows for the highest-scoring ranking (0.834). This

result is especially significant given that the main validation methods available, to

both Moliere and other similar systems (see survey in [225]), were expert analysis

and replicating the results of others [41]. Still, while the systems mentioned above

focus on the medical domain, we note that neither our metrics, nor our validation

126

methodology, are domain specific.

To demonstrate that our proposed validation process and new metrics apply

to real-world applications, we present a case study wherein our techniques validate

an open-source HG system as well as identify a novel gene-disease connection. We

modify Moliere to support our new metrics, and we perform our validation process.

This system is trained on Medline [162], a database containing over 27 million

papers (titles and abstracts) maintained by the National Library of Health. We

use SemMedDB [120], a database of predicates extracted from Medline, in order

to identify the set of “published” (plausible) and “noise” (implausible) hypotheses.

This database represents its connections in terms of codified entities provided by the

Unified Medical Language System (UMLS), which enables our experimental procedure

to be both reproducible and directly applicable to many other medical HG systems.

This evaluation results in an ROC AUC of 0.834, and when limiting the published set

to only predicates occurring in papers that received over 100 citations, this rises to

0.874. Then, we generate hypotheses, using up-to-date training data, which attempt

to connect HIV-associated neurodegenerative disease (HAND) to over 30,000 human

genes. From there, we select the top 1,000 genes based on our ranking metrics as

a large and rudimentary “candidate set.” By performing laboratory experiments

on select genes within our automatically generated set, we discover a new relation

between HAND and Dead Box RNA Helicasee 3 (DDX3). Thus, demonstrating the

practical utility of our proposed validation and ranking method.

6.2 Technical Background

Extracting Information from Hypothesis Generation Systems Swanson and

Smalheiser created the first HG system Arrowsmith [203], and in doing so outlined

127

the ABC model for discovery [223]. Although this approach has limitations [201], its

conventions and intuitions remain in modern approaches [208].

In the ABC model, users run queries by specifying two keywords a and c.

From there, the goal of a HG system is to discover some entity b such that there are

known relationships “a → b” and “b → c,” which allow us to infer the relationship

between a and c. Because many connections may require more than one element b

to describe, researchers apply other techniques, such as topic models in our case, to

describe these connections.

We center this work around the Moliere HG system [225]. Once a user

queries a and c, the system identifies a relevant region within its multi-layered knowl-

edge network, which consists of papers, terms, phrases, and various types of links. The

system then extracts abstracts and titles from this region and creates a sub-corpus

upon which we generate a topic model (Note that in [226] we address trade-offs of

using full text). This topic model describes groups of related terms, which we study

to understand the quality of the a-to-c connection. Previously, these results were

compared biased on those words that co-occur with high probability in prominent

topics. Without clear metrics, or a validation framework, experts could only help

evaluate a select handful of a, c pairs.

6.2.1 Topic Modeling

Originally presented by Blei et al. [31], Latent Dirichlet Allocation (LDA) is

a generative probabilistic model used to interpret large text corpora. This model

represents each document as a mixture of “topics,” which themselves are probability

distributions over the corpus’s vocabulary. In practice, each topic is a fuzzy cluster of

terms, which we can interpret to help us understand the overall document set. But,

128

TOPIC 0 TOPIC 1 TOPIC 2 TOPIC 3
tobacco patient find control

lung cancer normal level find
health select activity observe
cancer therapy study strain

Table 6.1: We generated 20 topics on documents related to tobacco and lung cancer.
Here four top words of the four most relevant topics.

a key limitation is that the number of topics must be specified a priori.

In most applications, the true number of topics is unknown. This is espe-

cially true in the case of HG, where the ultimate goal is to uncover hidden topical

information. Many algorithms overcome this challenge through expensive model se-

lection methods such as 10-fold cross validation [91]. But, cross validation can only

be accomplished when some known training data is available.

Although techniques such as hierarchical topic models [85] provide a method to

remove this limitation, they are computationally infeasible at our scale. Instead, we

leverage an observation that across models, prevalent topics will stay consistent [87].

When combined with the metrics we present in Section 6.4, we are safe to generate a

sufficiently large number of topics with the assurance that our methods will help filter

any extra noisy topics. Additionally, we could compare each model’s performance

with our metrics across a number of hyperparameter settings, but this falls outside

the scope of this work.

In Table 6.1, we show an example of topic models as they relate to HG. Using

the Moliere query process, we select documents relevant to both tobacco and lung

cancer in order to generate a topic model. In order to efficiently generate topic

models in parallel, we leverage PLDA+, a scalable parallel implementation of the

LDA algorithm [148].

Word and Phrase Embedding The method of finding dense vector representa-

129

tions of words is often referred to as “Word2Vec.” In reality, this umbrella term

references two different algorithms, the Continuous BOW (CBOW) method and the

Skip-Gram method [153]. Both rely on shallow neural networks in order to learn

vectors through word-usage patterns. We provide a diagram outlining these methods

in Figure 6.1.

Both methods take as input a corpus, represented as sentences, and an integer

representing the desired dimensionality of the resulting vectors. Additionally, both

methods begin by assigning random vectors to each word present in the training

corpus. Next, both methods select random windows, consisting of at most k words

from sampled sentences, in order to train on.

The CBOW method takes each window of k words and trains a shallow neural

net to predict the centered word from the k − 1 surrounding words. Thus, the k − 1

surrounding corresponding vectors are averaged together and fed as input into the

perceptron. The averaging process discards word-order information, reducing the

input effectively to the BOW model. This method compares the predicted vector

against the vector corresponding the centered word resulting in error calculations

leading to back-propagation.

The Skip-Gram model takes as input the centered word, and attempts to

predict the k − 1 surrounding words in each window. Like above, we compare the

output of the perceptron with the existing vectors corresponding to the surrounding

words. Because the order of predicted words is used to calculate error and back-

propagation updates, this model takes word order into account. Because the output

of this model is a whole window, as opposed to a single vector, error calculations and

back-propagation are substantially more expensive to compute.

Iteratively, Word2Vec refines its predictor and then uses it to predict a

higher quality vector space. This new vector space is used to continue refining the

130

Figure 6.1: Mikolov et al. presented two methods for discovering word embeddings
in [153, 155]. This diagram depicts the CBOW method, highlighting the intermedi-
ate layer. In this diagram, each rectangle represents a vector, with its internal circles
representing that vector’s dimensions. The diamonds represent the transformation
matrices which map input vectors to a hidden layer, and the hidden layer to the
output. Note how each dimension in the output vectors correspond to a linear com-
bination of hidden layer features. Additionally, note how the features discovered in
the hidden layer corresponds closely to a topic model.

prediction model, and so on until convergence.

Moliere uses FastText [113], a similar tool under the Word2Vec um-

brella, to find high-quality embeddings of medical entities. By preprocessing Med-

line text with the automatic phrase mining technique ToPMine [69], we improve

these embeddings while finding multi-word medical terms such as “lung cancer” or

“benign tumor.” We see in Figure 6.2 that FastText clusters similar biological

terms, an observation we later leverage to derive a number of metrics. We also see

131

Figure 6.2: The above diagram shows a 2-D representation of the embeddings for over
8 thousand UMLS keywords within Moliere. We used singular value decomposition
to reduce the dimensionality of these vectors from 500 to 2.

this property in a number of other word-embedding methods, such as Doc2Vec [132],

LINE [228], and FastText [34, 114, 113]. We use FastText in our methodology,

and note that the specific embedding method should not change this core princi-

ple, but additional exploration of each method’s clustering may reveal insights into

performance benefits.

Topic Models Latent Dirichlet Allocation (LDA) [31], the classical topic modeling

method, groups keywords based on their document co-occurrence rates in order to

describe the set of trends that are expressed across a corpus. A topic is simply a

probability distribution over a vocabulary, and each document from the input corpus

is assumed to be a mixture of these topics. For instance, a topic model derived

from New York Times articles would likely find one topic containing words such as

“computer,” “website,” and “Internet,” while another topic may contain words such

as “money,” “market,” and “stock.”

In the medical domain, some use topic models to understand trends across

scientific literature. We look for groupings of entities such as genes, drugs, and

132

diseases, which we then analyze to find novel connections. While LDA is the classical

algorithm, Moliere uses a parallel technique, PLDA+ [148] to quickly find topics

from documents related to a and c. Additionally, because Moliere preprocess’s

Medline articles with ToPMine, its resulting topic models include both words and

phrases. This often leads to more interpretable results, as a topic containing an n-

gram, such as “smoking induced asthma,” is typically easier to understand than a

topic containing each unigram listed separately with different probabilities.

We additionally can use the probabilities of each word to represent a topic

within an embedding space created with Word2Vec. For instance, we can take a

weighted average over the embeddings for each topic to describe each topics’s “center.”

Additionally, we can simply treat each topic as a weighted point cloud for the purposes

of typical similarity metrics. We leverage both representations later in our metrics.

6.3 Validation Methodology

In order to unyoke automatic HG from expert analysis, we propose a method

that any system can leverage, provided it can rank its proposed connections. A

successful system ought to rank published connections higher than those we randomly

created. We train a system given historical information, and create the “published,”

“highly-cited,” and “noise” query sets. We pose these connections to an HG system,

and rank its outputs in order to plot ROC curves, which determine whether published

predicates are preferred to noise. Through the area under these ROC curves, a HG

system demonstrates its quality at a large scale without expert analysis.

Our challenge starts with the Semantic Medical Database (SemMedDB) [120]

that contains predicates extracted from Medline defined on the set of UMLS terms [7].

For instance, predicate “C1619966 TREATS C0041296” represents a discovered fact

133

“abatacept treats tuberculosis.” Because Moliere does not account for word order

or verb, we look for distinct unordered word-pairs a–c instead. In Section 6.8, we

discuss how we may improve Moliere to include this unused information.

From there, we select a “cut year.” Using the metadata associated with each

predicate, we note the date each unordered pair was first published. For this challenge,

we train Moliere using only information published before the cut year. We then

identify the set of SemMedDB unordered pairs a–c first published after the cut year

provided a and c both occur in that year’s UMLS release. This “published set” of

pairs represent new connections between existing entities, from the perspective of the

HG system. We select 2010 as the cut year for our study in order to create a published

set of over 1 million pairs. (Due to practical limitations, our evaluation consists of a

randomly chosen subset of 4,319 pairs.)

Additionally, we create a set of “highly-cited” pairs by filtering the published

set by citation count. We use data from SemMedDB, Medline, and Semantic

Scholar to identify 1,448 pairs from the published set that first occur in a paper cited

over 100 times. We note that this set is closer to the number of landmark discoveries

since the cut-date, given that the published set is large and likely contains incidental

or incorrect connections.

To provide negative examples, we generate a “noise set” of pairs by sampling

the cut-year’s UMLS release, storing the pair only if it does not occur in SemMedDB.

These pairs represent nonsensical connections between UMLS elements. Although it

is possible that we may stumble across novel findings within the noise set, we assume

this will occur infrequently enough to not affect our results. We generate two noise

pair sets of equal size to both the published and highly-cited sets.

We run a–c queries from each set through Moliere and create two ranked

lists: published vs. noise (PvN) (8,638 total pairs) and highly-cited vs. noise (HCvN)

134

(2,896 total pairs). After ranking each set, we generate ROC curves [91], which allow

us to judge the quality of an HG system. If more published predicates occur earlier

in the ranking than noise, the ROC area will be close to 1; otherwise it will be closer

to 0.5.

6.4 New Ranking Methods for Topic Model Driven

Hypotheses

Because many HG systems do not currently produce a ranking criteria, such

as those systems that instead return topic models [225, 243], we propose here a

number of metrics to numerically evaluate the plausibility of potential connections.

We implement these metrics within Moliere [225]. This system is open source,

and already leverages word embeddings in order to produce topic model output for

potential connections — all of which are properties our metrics exploit. Put simply,

Moliere takes as input two keywords (a and c), and produces a topic model (T)

that describes the structure of relevant documents.

While these metrics are proposed in the context of validation, another ex-

tremely important use case is that of the one-to-many query. Often during candidate

selection, scientists may have a large list of initial potential targets — such as 30,000

genes in the human genome — that they wish to consider. For this, one may run

a large set of queries between some disease a, and each target ci. However, without

a ranking criteria, the analysis of each a–ci connection is left to experts, which is

untenable for most practical purposes.

To begin, we note a key intuition underpinning the following metrics, depicted

in Figure 6.3. Not only are related objects grouped in a word embedding space, but

135

Figure 6.3: The above depicts two queries, a–c1 and a–c2, where a–c1 is a published
connection and a–c2 is a noise connection. We see topics for each query represented
as diamonds via Centr(Ti). Although both queries lead to topics which are similar
to a, c1, or c2, we find that the the presence of some topic which is similar to both
objects of interest may indicate the published connection.

the distances between words are also meaningful. For this reason we hypothesize, and

later show through validation experiments, that one can estimate the strength of an

a–c connection by comparing the distance of topics to the embeddings of each a, c,

and their midpoint. Note, we use ε(x) to map a text object x into this embedding

space, as described in [153]. But, because not all hypotheses or topic models exhibit

the same features, we quantify this “closeness” in eleven ways, and then train a

polynomial to weight the relevance of each proposed metric.

6.4.1 Similarity Between Query Words

As a baseline, we first consider two similarity metrics that do not include topic

information: cosine similarity (CSim) and Euclidean distance (L2):

CSim(a, c) =
ε(a) · ε(c)

||ε(a)||2×||ε(c)||2
, L2(a, c) = ||ε(a)− ε(c)||2,

136

where a and c are the two objects of interest, and ε(x) is an embedding function (see

Section 6.2). Note that when calculating ROC curves for the L2 metric, we will sort

in reverse, meaning smaller distances ought to indicate published predicates.

These metrics indicate whether a and c share the same cluster with respect

to the embedding space. Our observation is that this can be a good indication that

a and c are of the same kind, or are conceptually related. This cluster intuition is

shared by others studying similar embedding spaces [244].

6.4.2 Topic Model Correlation

The next metric attempts to uncover whether a and c are mutually similar to

the generated topic model. This metric starts by creating vectors v(a, T) and v(c, T)

which express each object’s similarity to topic model T = {Ti}ki=1 derived from an

a− c query. We do so by calculating the weighted cosine similarity TopicSim(x, Ti)

between each topic Ti and each object x ∈ {a, c}, namely,

TopSim(x, Ti) =
∑

(w,p)∈Ti

p ·CSim(x,w),

where a probability distribution over terms in Ti is represented as word-probability

pairs (w, p). This metric results in a value in the interval [-1, 1] to represent the

weighted similarity of x with Ti. The final similarity vectors v(a, T) and v(c, T) in

Rk are defined below.

∀x ∈ {a, c} v(x, T) =

TopSim(x, T1)

TopSim(x, T2)

...

TopSim(x, Tk)

137

Finally, we can see how well T correlates with both a and c by taking another

cosine similarity

TopicCorr(a, c, T) =
v(a, T) · v(c, T)

||v(a, T)||2×||v(c, T)||2
∈ [−1, 1].

If TopicCorr(a, c, T) is close to 1, then topics that are similar or dissimilar

to a are also similar or dissimilar to c. Our preliminary results show that if some

explanation of the a − c connection exists within T , then many Ti ∈ T will likely

share these similarity relationships.

6.4.3 Similarity of Best Topic Centroid

While the above metric attempts to find a trend within the entire topic model

T , this metric attempts to find just a single topic Ti ∈ T that is likely to explain the

a − c connection. This metric is most similar to that depicted in Figure 6.3. Each

Ti is represented in the embedding space by taking a weighted centroid over its word

probability distribution. We then rate each topic by averaging its similarity with

both queried words. The score for the overall hypothesis is simply the highest score

among the topics.

We define the centroid of Ti as

Centr(Ti) =
∑

(w,p)∈Ti

ε(w) · p,

and then compare it to both a and c through cosine similarity and Euclidean distance.

When comparing with CSim, we highly rank Ti’s with centroids located within the

arc between ε(a) and ε(c). Because our embedding space identifies dimensions that

help distinguish different types of objects, and because we trained a 500-dimensional

138

embedding space, cosine similarity intuitively finds topics that share similar charac-

teristics to both objects of interests. We define the best centroid similarity for CSim

as

BestCentrCSim(a, c, T) = max
Ti∈T

CSim(a, Ti) + CSim(c, Ti)

2
.

What we lose in the cosine similarity formulation is that clusters within our

embedding space may be separate with respect to Euclidean distance but not cosine

similarity. In order to evaluate the effect of this observation, we also formulate the

best centroid metric with L2 distance. In this formulation we look for topics that

occur as close to the midpoint between ε(a) and ε(c) as possible. We express this

score as a ratio between that distance and the radius of the sphere with diameter

from ε(a) to ε(c). In order to keep this metric in a similar range to the others, we

limit its range to [0, 1], namely, for the midpoint m = (ε(a) + ε(c))/2.

BestCentrL2(a, c, T) = max
Ti∈T

{
1− ‖Centr(Ti)−m‖2

‖m‖2

}

6.4.4 Cosine Similarly of Best Topic Per Word

In a similar effort to the above centroid-based metric, we attempt to find

topics which are related to a and c, but this time on a per-word (or phrase) basis

using TopicSim(x, Ti) from Section 6.4.2. Now instead of looking across the entire

topic model, we attempt to identify a single topic which is similar to both objects of

interest. We do so by rating each topic by the lower of its two similarities, meaning

the best topic overall will be similar to both query words.

BestTopPerWord(a, c, T) = max
Ti∈T

min

TopSim(a, Ti),

TopSim(c, Ti)

139

6.4.5 Network of Topic Centroids

A majority of the above metrics rely on a single topic to describe the potential

connection between a and c, but as Smalheizer points out in [4], a hypothesis may

be best described as a “story” — a series of topics in our case. To model semantic

connections between topics, we induce a nearest-neighbors network N from the set of

vectors V = ε(a) ∪ ε(b) ∪ {Centr(Ti)|Ti ∈ T} which form the set of nodes for N . In

this case, we set the number of neighbors per node to the smallest value (that may be

different for each query) such that there exists a path from a to c. Using this topic

network, we attempt to model the semantic differences between published and noise

predicates using network analytic metrics.

We depict two such networks in Figure 6.4, and observe that the connectiv-

ity between a and c from a published predicate is substantially stronger and more

structured. In order to quantify this observed difference, we measure the average

betweenness and eigenvector centrality [164] of nodes along a shortest path from a to

c (denoted by a ∼ c) within N to reflect possible information flow between Ti ∈ T .

This shortest path represents the series of links between key concepts present within

our dataset that one might use to explain the relationship between a and c. We

expect the connection linking a and c to be stronger if that path is more central to

the topic network. Below we define metrics to quantify the differences in these topic

networks. Such network analytic metrics are widely applied in semantic knowledge

networks [207].

TopWalkLength(a, c, T): Length of shortest path a ∼ c

TopWalkBtwn(a, c, T): Avg. a ∼ c betweenness centrality

TopWalkEigen(a, c, T): Avg. a ∼ c eigenvalue centrality

TopNetCCoef(a, c, T): Clustering coefficient of N

140

Figure 6.4: Above depicts two topic networks as described in Section 6.4.5. In this
visualization, longer edges correspond to dissimilar neighbors. In red are objects a
and c, which we queried to create these topic models. We observe that the connec-
tivity between a and c from the published predicate is much higher than in the noisy
example.

TopNetMod(a, c, T): Modularity of N

6.4.6 Combination of Multiple Metrics

Each of the above methods are based on different assumptions regarding topic

model or embedding space properties exhibited by published connections. To leverage

each metric’s strengths, we combined the top performing ones from each category

into the following PolyMultiple method. We explored polynomial combinations

in the form of
∑

i αix
βi
i for ranges of αi ∈ [−1, 1] and βi ∈ [1, 3] after scaling each

xi to the [0, 1] interval. Through a blackbox optimization technique, we searched

over one-million parameter combinations. In doing so we maximize for the AUC of

our validation curve by sampling each αi and βi from their respective domains. We

perform this search stochastically, sampling from parameter space and limiting our

search space as we find stable local-minima. Our results represent the best parameter

141

values determined after one-million parameter samples.

PolyMultiple(a, c, T) = α1 · Lβ12 + α2 ·BestCenterLβ22

+ α3 ·BestTopPerWord(a, c, T)β3 + α4 ·TopCorr(a, c, T)β4

α5 ·TopWalkBtwn(a, c, T)β5 + α6 ·TopNetCCoef(a, c, T)β6

6.5 Results and Lessons Learned

As described in Section 6.3, our goal is to distinguish publishable connections

from noise. We run Moliere to generate topic models related to published, noise,

and highly-cited pairs. Using this information, we plot ROC curves in Figures 6.5

and 6.6, and summarize the results in Table 6.2. These plots represent an analysis of

8,638 published vs. noise (PvN) pairs and 2,896 (HCvN) pairs (half of each set are

noise). Unfortunately, no alternative general-purpose query HG systems that perform

in a reasonable time are freely available for the comparison with our ranking methods.

Topic Model Correlation metric (see Section 6.4.2) is a poorly performing metric

with an ROC area of 0.609 (PvN) and 0.496 (HCvN). The core issue of this method

is its sensitivity to the number of topics generated, and given that we generate 100

topics per pair, we likely drive down performance through topics which are unrelated

to the query. In preliminary testing, we observe this intuition for queries with only

20 topics, but also find the network-biased metrics are less meaningful. In Section 6.8

we overview a potential way to combine multiple topic models in our analysis.

Surprisingly, this metric is less able to distinguish highly-cited pairs, which we

suppose is because highly-cited connections often bridge very distant concepts [181]

and likely results in more noisy topic models. Additionally, we may be able to limit

142

this noise by tuning the number of topics returned from a query, as described in

Section 6.8.

L2-based metrics exhibit even more surprising results. BestCentrL2 performs

poorly, with an ROC area of 0.578 (PvN) and 0.587 (HCvN), while the much simpler

L2 metric is exceptional, scoring a 0.783 (PvN) and 0.809 (HCvN). We note that

if two words are related, they are more likely to be closer together in our vector

space. We evaluate topic centroids based on their closeness to the midpoint between

a and c, normalized by the distance between them, so if that distance is small, the

radius from the midpoint is small as well. Therefore, it would seem that the distance

between a and c is a better connection indication, and that the result of the centroid

measurement is worse if this distance is small.

CSim-based metrics are more straightforward. The simple CSimmetric scores a

0.709 (PvN) and 0.703 (HCvN), which is interestingly consistent given that the L2

metric increases in ROC area given highly-cited pairs. The BestTopicPerWord

metric only scores a 0.686 (PvN), but increases substantially to 0.731 (HCvN). The

topic centroid method BestCentroidCSim is the best cosine-based metric with an

ROC area of 0.719 (PvN) and 0.742 (HCvN). This result is evidence that our initial

hypothesis described in Figure 6.3 holds given cosine similarity, but as stated above,

does not hold for Euclidean distance.

Topic network metrics are all outperformed by simple L2, but we see interest-

ing properties from their results that help users to interpret generated hypotheses.

For instance, we see that TopicWalkBtwn is a negative indicator while Top-

icWalkEigen is positive. Looking at the example in Figure 6.4 we see that a and

c are both far from the center of the network, connected to the rest of the topics

through a very small number of high-betweenness nodes. In contrast, we see that in

the network created from a published pair, the path from a to c is more central. We

143

Metric Name PvN ROC HCvN ROC
PolyMultiple 0.834 0.874
L2* 0.783 0.809
CSim 0.709 0.703
BestCenterL2 0.578 0.587
BestCenterCSim 0.719 0.742
BestTopicPerWord 0.686 0.731
TopicCorr 0.609 0.496
TopicWalkLength* 0.740 0.778
TopicWalkBtwn* 0.659 0.658
TopicWalkEigen 0.585 0.582
TopicNetCCoef* 0.651 0.638
TopicNetMod* 0.659 0.628

Table 6.2: The above summarizes all ROC area results for all considered metrics on
the set of published vs. noise pairs (PvN) and highly-cited vs. noise pairs (HCvN).
Metrics marked with a (*) have been sorted in reverse order for the ROC calculations.

also see a denser clustering for the noise pair network, which is echoed by the fact

that TopicNetCCoef and TopicNetMod are both negative indicators. Lastly,

we see that TopicWalkLength performs the best out of these network approaches,

likely because it is most similar to the simple L2 or CSim metrics.

Combination of metrics, PolyMultiple, significantly outperforms all others with

ROC areas of 0.834 (PvN) and 0.874 (HCvN). This is unsurprising because each other

metric makes a different assumption about what sort of topic or vector configuration

best indicates a published pair. When each is combined, we see not only better perfor-

mance, but their relative importances. By studying the coefficients of our polynomial

we observe that the two L2-based metrics are most important, followed by the topic

network methods, and finally by TopicWalkCorr and BestTopicPerWord.

Unsurprisingly, the coefficient signs correlate directly with whether each metric is a

positive or negative indication as summarized in Table 6.2. Additionally, the ordering

of importance roughly follows the same ordering as the ROC areas.

144

Figure 6.5: The above ROC curves
show the ability for each of our
proposed methods to distinguish the
Moliere results of published pairs
from noise. We use our system to gen-
erate hypotheses regarding 8,638 pairs,
half from each set, on publicly avail-
able data released prior to 2,015. We
only show the best performing metrics
from Section 6.4.5 for clarity.

Figure 6.6: The above ROC curves
show the ability for each of our
proposed methods to distinguish the
Moliere results of highly-cited pairs
from noise. We identify 1,448 pairs
who first occur in papers with over 100
citations published after our cut date.
To plot the above ROC curve, we also
select an random subset of equal size
from the noise pairs.

145

6.6 Case-Study: HAND and DDX3 Candidate Se-

lection

Our proposed validation method is rooted in the process of candidate selec-

tion. To demonstrate our method’s applicability to real-world scenarios, we applied

the above methods to a series of queries surrounding Human Immunodeficiency Virus -

associated dementia (or HIV-associated neurodegenerative disease, HAND). HAND is

one of the most common and clinically important complications of HIV infection [125].

The brain-specific effects of HIV are of great concern because the HIV-infected pop-

ulation is aging and unfortunately revealing new pathologies [210, 26]. About 50%

of HIV-infected patients are at risk of developing HAND, which might be severely

worsened by abusing drugs such as cocaine, opioids and amphetamines [24, 42].

We generated over 30,000 queries, each between HAND and a gene from the

HUGO Gene Nomenclature Committee dataset [2]. The network that generated these

results consisted of the 2017 Medline dataset, the 2017AB UMLS release, and the

2016 SemMedDB release (latest at the time). We trained FastText using all of the

available titles and abstracts, about 27 million in total, and selected a dimensionality

of 500 for our word embeddings. Our results consist of each disease-gene query ranked

by our PolyMultiple metric.

Based on this ranking we select the first ∼1000 genes for further analysis.

We observe that many of the top genes — such as APOE-4, T-TAU, and BASE1,

which occur in our top five — are known to be linked to dementia. So to direct

our search to yet-unknown connections, we select those genes that have no previous

connection to HAND, but still ranked highly overall. This process limits our search to

those proteins that have known selective compounds, which were often tested animal

models or clinical trials.

146

From this candidate set we selected Dead Box RNA Helicase 3 (DDX3). We

tested the activity of a DDX3 inhibitor on the tissue culture model of HAND, which is

widely used for the analysis combine neurotoxicity of HIV proteins and drugs of abuse.

Here we tested the effect of the DDX3 inhibition on combined toxicity of most toxic

HIV protein, Trans-Activator of Transcription (Tat). The mouse cortical neurons had

been treated with HIV Tat followed by the addition of cocaine. The combination of

Tat and cocaine kills more than 70% of the neurons, while the inhibitor protects the

neurons from Tat/cocaine toxicity (Figure 6.7).

Based on the analysis, we formulate following hypothesis: Exposing neurons

with Tat protein causes internal stress and results in the formation of Stress-Granules

(SGs) — the structures in cytoplasm formed by multiple RNAs and proteins. These

gel-like structures sequester cellular RNA from translation, and the formation of SGs

requires enzymatically active Dead Box RNA Helicase 3. The formation of SGs also

allows the neurons to wait out the stress. However, prolonged stress associated with

HIV-Tat treatment leads to the formation of pathological stress granules, which are

denser and have a different composition relative to “normal” ones. Additional ex-

posure to cocaine further exaggerates the “pathological” SGs and eventually causes

neuronal death. The hypothesis, initially generated with Moliere, led to the follow-

ing finding: Treatment with a DDX3-specific inhibitor blocks the enzymatic activity

of the DDX3. This lack of enzymatic activity, in turn, blocks Tat-dependent stress

granules from formating and protects neurons from the combined toxicity of Tat and

cocaine. In Figure 6.7, we demonstrate the hypothesis scheme. Thus, the application

of the automated HG system pointed to a new avenue for anti-HAND therapy and

to the prototype of a small molecule for drug development.

147

Figure 6.7: Scheme of the hypothesis of Stress-Granule dependent mechanism of neu-
roprotection by DDX3 inhibitor. Neurons are curved figures. Treatment with HIV-
Tat leads to DDX3-dependent formation of SGs (A), which transform from “normal”
to “pathological” (B). The addition of cocaine further enlarges the SGs and leads to
the death of the neurons (C). Treatment with DDX3 specific inhibitor blocks DDX3
enzymatic activity and Tat-dependent SG formation (D) and protects the neurons
from cocaine-induced death (E).

148

6.7 Related Work and Proposed Validation

The HG community struggles to validate its systems in a number of ways.

Yetisgen-Yildiz and Pratt, in their chapter “Evaluation of Literature-Based Discovery

Systems,” outline four such methods (M1-M4) [41, 253].

M1: Replicate Swanson’s Experiments. Swanson, during his development of

ARROWSMITH [203], worked alongside medical researchers to uncover a number

of new connections. These connections include the link between Raynaud’s Disease

and Fish Oil [219], the link between Alzheimer’s Disease and Estrogen [202] and the

link between Migraine and Magnesium [220]. As discussed in [253], a number of

projects have centered their validation effort around Swanson’s results [97, 28, 211,

104, 170]. These efforts always rediscover a number of findings using information

before Swanson’s discovery date, and occasionally apply additional metrics such as

precision and recall in order to quantify their results [91].

While limiting discussion to Swanson’s discoveries reduces the domain of dis-

covery drastically, at its core this method builds confidence in a new system through

its ability to find known connections. We expand on this idea by validating auto-

matically and on a massive scale, freeing our discourse from a single researcher’s

findings.

M2: Statistical Evaluation. Hristovski et al. validate their system by studying

a number of relationships and note their confidence and support with respect to the

Medline document set [103]. Then, they can generate potential relationships for the

set of new connections added to UMLS [7] or OMIM [90]. By limiting their method

to association rules, Hristovski et al. note that they can validate their system by

predicting UMLS connections using data available prior to their publications. There-

fore, this method is similar to our own, but we notice that restricting discussion to

149

only UMLS gene-disease connections results in a much smaller set than the predicate

information present with SemMedDB.

Pratt et al. provide additional statistical validation for their system LitLinker [170].

This method also calculates precision and recall, but this time focusing on their B-set

of returned results. Their system, like ARROWSMITH [203], returns a set of inter-

mediate terms which may connect two queried entities. Pratt et al. run LitLinker for

a number of diseases on which they establish a set of “gold standard” terms. Their

method is validated based on its ability to list those gold-standard terms within its

resulting B-sets. This approach requires careful selection of a (typically small) set of

gold-standard terms, and is limited to “ABC” systems like ARROWSMITH, which

are designed to identify term lists [201].

M3: Incorporating Expert Opinion. This ranges from comparisons between sys-

tem output and expert output, such as the analysis done on the Manjal system [211],

to incorporating expert opinion into gold-standard terms for LitLinker [170], to run-

ning actual experiments on potential results by Wren et al. [251]. Expert opinion is at

the heart of many recent systems [243, 225, 145, 221], including the previous version

of our own. This process is both time consuming and risks introducing significant

bias into the validation.

Spangler incorporates expert knowledge in a more sophisticated manner through

the use of visualizations [208, 209]. This approach centers around visual networks

and ontologies produced automatically, which allows experts to see potential new

connections as they relate to previously established information. This view is shared

by systems such as DiseaseConnect [145] which generates sub-networks of ONIM and

GWAS related to specific queries. Although these visualizations allow users to quickly

understand query results, they do not lend themselves to a numeric and massive eval-

uation of system performance.

150

BioCreative, a set of challenges focused on assessing biomedical text mining,

is the largest endeavor of its kind, to the best of our knowledge [101]. Each challenge

centers around a specific task, such as mining chemical-protein interactions, algorith-

mically identifying medical terms, and constructing causal networks from raw text.

Although these challenges are both useful and important, their tasks fall under the

umbrella of information retrieval (and not HG) because their tasks compare expert

analysis with software results given the same text.

M4: Publishing in the Medical Domain. This method is exceptionally rare

and expensive. The idea is to take prevalent potential findings and pose them to the

medical research community for another group to attempt. Swanson and Smalheiser

rely on this technique to solidify many of their early results, such as that between

magnesium deficiency and neurologic disease [205].

Bakkar et al. take a similar approach in order to demonstrate the efficacy

of Watson for Drug Discovery [18, 209] To do so, this work begins by identifying

11 RNA-binding proteins (RBPs) known to be connected to Amyotrophic Lateral

Aclerosis (ALS). Then, the automated system uses a recommender system to select

RPBs that exhibit similar connection patterns within a large document co-occurrence

network. Domain scientists then explore a set of candidates selected by the computer

system, and uncover five RPBs that were previously unrelated to ALS.

An alternative to the domain-scientist approach is taken by Soldatova and

Rzhetsky wherein a “robot scientist” automatically runs experiments posed by their

HG system [206, 180]. This system uses logical statements to represent their hy-

potheses, so new ideas can be posed through a series of implications. Going further,

their system even identifies statements that would be the most valuable if proven

true [181]. However, the scope of experiments that a robot scientist can undertake

is limited; in their initial paper, the robot researcher is limited to small-scale yeast

151

experiments. Additionally, many groups cannot afford the space and expense that an

automated lab requires.

6.8 Deployment Challenges and Open Problems

Validation Size. Our proposed validation challenge involves ranking millions of

published and noise query pairs. However, in Section 6.5 we show our results on

a randomly sampled subset of our overall challenge set. This was necessary due to

performance limitations of Moliere, a system which initially required a substantial

amount of time and memory to process even a single hypothesis. To compute these

results, we ran 100 instances of Moliere, each on a 16 core, 64 GB RAM machine

connected to a ZFS storage system. Unfortunately, performance limitations within

ZFS created a bottleneck that both limited our results and drastically reduced cluster

performance overall. Thus, our results represent a set of predicates that we evaluated

in a limited time period.

System Optimizations. While performing a keyword search, most network-centered

systems are either I/O or memory bound simply because they must load and traverse

large networks. In the case of Moliere, we initially spent hours trying to find short-

est paths or nearby abstracts. But, we found a way to leverage our embedding space

and our parallel file system in order to drastically improve query performance. In

brief, one can discover a relevant knowledge-network region by inducing a subnet-

work on a and c and expanding that selection by adding ith order neighbors until

a and c are connected. From our experiments, i rarely exceeds 4. This increases

performance because, given a parallel file system and p processors, identifying the

subnetwork from an edge list file is in order O(ni/p). The overall effect reduced the

wall-clock runtime of a single query from about 12 hours to about 5-7 minutes. Ad-

152

ditionally, we reduced the memory requirement for a single query from over 400GB

to under 16GB.

Highly-Cited Predicates. Identifying highly-cited predicates requires that we syn-

thesize information across multiple data sources. Although SemMedDB contains

Medline references for each predicate, neither contains citation information. For

this, we turn to Semantic Scholar because not only do they track citations of medical

papers, but they allow a free bulk download of metadata information (many other

potential sources either provide a very limited API or none at all). In order to match

Semantic Scholar data to Medline citation, it is enough to match titles. This process

allows us to get citation information for many Medline documents, which in turn

allow us to select predicates whose first occurrence was in highly-cited papers. We

explored a number of thresholds for what constitutes “highly cited” and selected 100

because it was a round number and selected a sizable predicate set. Because paper

citations follow a power-law distribution, any change drastically effects the size of this

set. We note that the set of selected predicates was also limited by the quality of data

in Semantic Scholar, and that the number of citations identified this was appeared to

be substantially lower than that reported by other methods.

Quality of Predicates. Through our above methods we learned that careful rank-

ing methods can distinguish between published and noise predicates, but there is a

potential inadequacy in this method. Potentially, some predicates that occur within

our published say may be untrue. Additionally, it is possible that a noise predicate

may be discovered to be true in the future. If Moliere ranks the published predicate

which is untrue below the noise predicate which is, the result would be a lower ROC

area. This same phenomena is addressed by Yetisgen-Yildiz and Pratt when they

discuss the challenges present in validating literature-based discovery systems [253]

— if a HG systems goal is to identify novel findings, then it should find different

153

connections than human researchers.

We show through our results that despite an uncertain validation set, there

are clearly core differences between publishable results and noise, which are evident

at scale. Although there may be some false positives or negatives, we see through our

meaningful ROC curves that they are far outnumbered by more standard predicates.

Automatic Question Posting. Going forward we wish to study highly ranked

noise predicates for the purpose of automatic question posing. This would mean that

a system would search through its set of entities, run queries, and report the most

promising potential new connections. In order to do this effectively we need to gain

an understanding of how we can intelligently search local regions of our knowledge

network and how to define locality for this task.

Comparison with ABC Systems. Additionally, we would like to explore how our

ranking methods apply to traditional ABC systems. Although there are clear limita-

tions to these systems [201], many of the original systems such as ARROWSMITH

follow the ABC pattern. These systems typically output a list of target terms and

linking terms, which could be thought of as a topic. If we were to take a pre-trained

embedding space, and treated a set of target terms like a topic, we could likely use

our methods from Section 6.4 to validate any ABC system.

Verb Prediction. We noticed, while processing SemMedDB predicates, that we

can improve Moliere if we utilize verbs. SemMedDB provides a handful of verb

types, such as “TREATS,” “CAUSES,” or “INTERACTS WITH,” that suggest a

concrete relationship between the subject and object of a sentence. Moliere cur-

rently outputs a topic model that can be interpreted using our new metrics, but

does not directly state what sort of connection may exist between a and c. Thus we

would like to explore accurately predicting these verb types given only topic model

information.

154

Interpretability of Hypotheses remains one of the major problems in HG systems.

Although topic-driven HG partially resolve this issue by producing readable output,

we still observe many topic models T (i.e., hypotheses) whose Ti ∈ T are not intu-

itively connected with each other. While the proposed ranking is definitely helpful

for understanding T , it still does not fully resolve the interpretability problem. One

of our current research directions is to tackle it using text summarization techniques.

Scope. While we focus on biomedical science, any field that is accurately described by

entities that act on one another benefits from our network and text mining methods.

For instance, economic entities, such as governments or the upper/lower class, interact

via actions such as regulation or boycott. Similarly, patent law consists of inventions

and the components that comprise them. Mathematics, in contrast, is not served by

this representation — the algebra does not act on other math entities. Here automatic

theorem proving is better equipped to generate hypotheses. We are presently unsure

if the same is true for computer science.

155

Chapter 7

Are Abstracts Enough for

Hypothesis Generation?

Abstract

The potential for automatic hypothesis generation (HG) systems to improve

research productivity keeps pace with the growing set of publicly available scientific

information. But as data becomes easier to acquire, we must understand the effect

different textual data sources have on our resulting hypotheses. Are abstracts enough

for HG, or does it need full-text papers? How many papers does an HG system need to

make valuable predictions? How sensitive is a general-purpose HG system to hyper-

parameter values or input quality? What effect does corpus size and document length

have on HG results? To answer these questions we train multiple versions of knowl-

edge network-based HG system, Moliere, on varying corpora in order to compare

challenges and trade offs in terms of result quality and computational requirements.

Moliere generalizes main principles of similar knowledge network-based HG sys-

tems and reinforces them with topic modeling components. The corpora include the

156

abstract and full-text versions of PubMed Central, as well as iterative halves of Med-

line, which allows us to compare the effect document length and count has on the

results. We find that, quantitatively, corpora with a higher median document length

result in marginally higher quality results, yet require substantially longer to process.

However, qualitatively, full-length papers introduce a significant number of intruder

terms to the resulting topics, which decreases human interpretability. Additionally,

we find that the effect of document length is greater than that of document count,

even if both sets contain only paper abstracts.

7.1 Introduction

While the driving pace of research accelerates [130, 233], computer-aided meth-

ods become increasingly more important for improving scientific productivity. This is

especially apparent in medicine and life sciences — the National Institute of Health

introduced 1.1 million papers to Medline in 2017 alone. Hypothesis Generation

(HG) [208] is the process of finding unknown-yet-useful connections from the set of

publicly available information. Usually, this involves a combination of text processing,

data mining, and graph-based approaches.

When scientists miss cross-cutting connections, they leave behind undiscov-

ered public knowledge [221], which many aim to detect through Hypothesis Genera-

tion (also called Literature-Based Discovery) Systems [41, 208]. Early attempts find

important connections from the co-occurrences of keywords across paper titles [202],

while more advanced methods, such as recommender systems [209] and topic mod-

eling [225], rely on abstracts and preprocessed longer documents such as full-text

papers in IBM Watson Drug Discovery system. No matter the method, every system

is primarily dependent on text, yet to the best of our knowledge no one has directly

157

and systematically addressed the effect corpus quality, size, and document length has

on the quality of knowledge network-based HG systems.

Because of huge practical importance of HG systems for accelerating biomed-

ical discovery, there are many controversial arguments on the need of full-text papers

in the scientific community [27, 190, 192, 248]. However, in the vast majority of stud-

ies, this issue is raised with respect to traditional information retrieval (IR) and data

mining tasks and systems, which usually do not substitute HG. Clearly, full-texts are

more beneficial for IR as they contain more information, but does the same hold for

HG?

Our Contribution: We explore the effect corpus size and document length have

on knowledge network-based HG systems, primarily by comparing their performance

with full-text papers against abstracts. Our experimental studies are based on the

HG system Moliere [225] that extends the basic principals of knowledge discovery

networks introduced in earlier works [203, 208, 243]. This centers around two major

studies: the first comparing the performance of our system trained on abstract and

full-text versions of the same document set, the second comparing the performance

of iterative halves of a large abstract set. Our results, while experimentally focused

on Moliere, have important implications to other similar systems [209, 239, 243].

We evaluate our results in terms of quality, using the hypothesis ranking tech-

niques developed in [226], and discuss practical challenges in terms of memory con-

sumption, runtime, and interpretability. We find that corpora with a higher median

document length perform better than those with shorter documents and that this ef-

fect can be more substantial than simply adding more documents. Most importantly,

when comparing a corpus of full-text documents against a corpus of the abstracts of

those same documents, we notice a marginal improvement in quality (if at all), yet a

45× increase in runtime from 100 seconds to 75 minutes.

158

To perform our evaluation, we create multiple instances of our HG system.

By this we mean that we perform our entire knowledge network construction pro-

cess, starting from raw documents and ending at a large knowledge network [225],

independently for each corpus version. We start our study with data from Medline

as well as PubMed Central (PMC). The former contains over 24 million abstracts

dating back to the late 1800’s, while the latter contains 4 million full-text documents

(only 1.7M in XML) and started in the year 2000. Using PMC we explore the effect

document length has on HG systems by training two instances of Moliere on the

abstract and full-text versions of the same corpus. With Medline, we evaluate the

effect of corpus size using five instances of Moliere trained on repeated halves of

the data set.

Our validation compares instances by their ability to distinguish published

from noise connections based on their resulting hypotheses, given that the instance

has no available information regarding either. This begins by selecting a cut-year —

we choose 2015 — and filtering our data sources to only include information that was

available prior to it. We extract recently published connections from SemMedDB,

a database of Medline predicates (subject-verb-object structures), by identifying

those predicates that first occur after the cut year [120]. We additionally create an

equal number of randomly sampled connections that do not exist within SemMedDB.

By generating hypotheses for all of these connections, and ranking their results with

regard to a number of metrics, we plot ROC curves that describe the quality of our

system.

159

7.2 Background: Literature-Based HG

Swanson first introduced Hypothesis Generation (HG) and his ABC model

for knowledge discovery [219]. He found a connection between Raynaud’s syndrome

(A) and fish oil (C) through their connection with blood viscosity (B). Although

Swanson’s early work managed to extract these ideas using only the titles of Med-

line articles, recent systems, such as BrainSCANr [239], DiseaseConnect [145],

and Moliere [225], use modern text-mining technologies to identify latent features

from abstracts in order to better extract semantic information. These systems use

abstracts for two reasons. First, abstracts are more easily available than full-text

data. For example, Medline contains 24 million abstracts, while only 4 million full-

text documents are available through PubMed Central (and most are not available in

XML). Second, there is conventional understanding that abstracts contain effective

summaries of key findings [67], which means they have a better signal-to-noise ratio

than full-text documents, which often contain textual information that is less relevant

for the HG-task (e.g., references to figures, a detailed description of experimental con-

ditions, inappropriate background). However, the latter has not been systematically

tested in the literature.

We do, however, observe at least one commercial system that uses full-text doc-

uments. Watson for Drug Discovery [209] includes a sophisticated entity extraction

and ontology creation pipeline that allows it to overcome the typical signal-to-noise

challenges present in these longer texts. Additionally, the Watson discovery methods,

such as co-occurrence networks and recommender systems, function on top of these

pre-processed results, which means that Watson does not need to process full papers

while performing individual queries. However, we are limited in our comparison be-

cause Watson, as well as most other HG systems, are proprietary or closed-source

160

and not available for a systematic comparison. In Section 7.5 we explore the tradeoffs

present between these choices of methods.

7.2.1 Abstract versus Full-Text Comparisons

Previous studies that compare abstracts and full-text papers have done so for

the purpose of information retrieval and pattern discovery in data mining (IR/DM).

While IR/DM’s goal is to extract known information (including finding patterns)

in (un)structured data [152], HG’s goal is to propose novel hypotheses and discover

unknown information (not necessarily represented as a pattern). With this distinction

in mind, it is clear that full-text documents, by nature of their length, contain more

retrievable information than abstracts.

Shah et al. [192] perform keyword extraction from 104 articles published in

Nature Genetics, showing that the full text of an article can contain as many as

four times more relevant keywords than its abstract. Schuemie et al. [190] extract

keywords from around 4,000 biomedical articles. They similarly find that full-texts

include substantially more information than abstracts, leading to a greater number

of identified keywords. Westergaard et al. [248] confirm this finding in the context

of named entity recognition (protein–protein, disease–gene, and protein subcellular

associations) from 15 million biomedical full-text articles.

While the above studies show that more text is better for information ex-

traction, they also show that there is significant heterogeneity in information density

between different sections of an article. Both Shah et al. [192] and Schuemie et al. [190]

find that the information density (i.e., the ratio of relevant to irrelevant keywords)

is highest in the abstract. Given that full-text articles are more difficult to obtain,

restricting the analysis to abstracts can be a sensible choice (given 24M abstracts

161

are available through Medline, but only about 4M full-text articles are available

through PMC). Further, using full-text articles always requires significant efforts in

additional text preprocessing, such as parsing parenthesized sentences or extracting

text in footnotes.

Blair et al. [27] note the limitations in comprehending full-texts — longer doc-

uments typically mention many different concepts. For instance, in our later results,

we notice that many full-text documents contain significant information related to

experimental procedure, which may obfuscate more relevant information regarding

conclusions of new findings. This added “noise” can decrease the quality of an analy-

sis, depending on which metric is deemed most important. Sinclair and Webber [200],

for example, perform Gene Ontology (GO) code classification on 1,000 articles. Their

results show that classification on full-text articles has the highest recall but lowest

precision, while the opposite was true when only titles and abstracts were used.

Outside the domain of biomedical literature research, there are similarly mixed

results on the question whether more text is necessarily better. In an analysis of

data from the online social network Twitter, Conover et al. [55] find that a classifier

trained on hashtags (i.e., user-selected keywords attached to a message) outperforms

a classifier trained on the full text of tweets for the purpose of predicting users’

political alignment. They argue that this result is due to a better signal-to-noise

ratio of keywords compared to full-text messages.

Syed and Spruit [227] apply LDA topic modeling [31] to full-text articles and

abstracts from the domain of fisheries and aquatic sciences. Comparing the quality of

estimated topics (both statistically and through human expert coders), they find that

full text produces more high-quality topics than abstracts, but only when estimated

on a small data set with 4,417 articles from a single journal. On a larger data set

with around 15,000 articles from 12 journals, both full text and abstracts produce

162

similarly good results.

To summarize, previous work has found that more text is generally better for

IR/DM tasks, but many applications suffer when trained with full texts because a

longer length comes with a reduced signal-to-noise ratio, even for IR/DM [54]. Given

that full-text documents are much harder to acquire and require more computational

resources to process, it is important to quantify these trade-offs in the context of

prediction in HG.

7.3 Methodology

In order to understand the effect corpus size and document length has on

knowledge-network-based HG systems, we train multiple instances of Moliere using

data from both PubMed Central (PMC) as well as Medline. For practical purposes,

we limit our discussion to this system, but note our results have further-reaching

implications. In this section, we provide an overview of these data sources, outline

our training and validation procedure, and explain the quantitative and qualitative

results we collect.

7.3.1 Moliere Pipeline Background

The process of generating fruitful hypotheses via Moliere begins with textual

data sources. In this work, we will focus on the titles and abstracts provided by

Medline, or the plain-text releases of full-text papers provided by PubMed Central

as our input data, but it is useful to keep in mind that Moliere is intended to work

well given various input sources. From there, we leverage recent phrase mining tools,

such as ToPMine [69] or AutoPhrase [193], to segment our raw text into more easily

interpretable n-grams. We find that this step is crucial to making our downstream

163

model output human understandable. From there we run FastText [114], a recent

advance in the save vein as Word2Vec [153], to embed each n-gram into a 500-

dimensional vector space. This process allows us to mathematically describe the

semantic similarities between our terms through simple metrics such as L2 norm or

cosine similarity. We then project each document into the space by taking a weighted

average of each n-grams embedding with respect to that terms TF-IDF score. Finally,

we create a nearest-neighbors network within the abstract set, and separately within

the n-gram set. Links between these sets derive from the TF-IDF scores between

abstracts and n-grams. In addition, we introduce UMLS terms, codified medical

entities with known links between them, as a ”backbone” to the overall network. A

diagram describing this process is shown in Figure 7.1(a).

To query this network for hypotheses, we begin with two nodes of interest, a

and c. Typically, these are either keywords or UMLS terms. We identify a region

of the overall network containing both keywords, and run Dijkstra algorithm within

that region to quickly find a shortest-path connecting both terms. This path, at

a high level, represents a series of terms and documents that ought to outline the

relationship between a and c, but in practical cases, this path alone is not sufficient

for a human scientist to form a useful hypothesis. Therefore, we increase the amount

of relevant information by taking a large set of nearby documents, typically on the

order of 5-15 thousand, that are first or second-degree neighbors to the path. This

collection of nearby papers represents a sizable portion of related research, which

more likely describes the nature of an a-c relationship. We use LDA topic models

to uncover the structure of this document subset, which offers some initial insights

though the clustering of interesting terms. The process of creating these topics from

relevant document sets is diagrammed in Figure 7.1(b).

More recently, we proposed a number of metrics to evaluate a-c relevance

164

(a) Network Construction Pipeline

(b) Query Processing Pipeline

Figure 7.1: Above depicts the network construction and query pipeline. First, input
from raw data sources is tokenized into meaningful n-grams, then embedded, and
used with other features and sources to create a nearest-neighbors network. Once
the network is constructed, the query process details how we use shortest paths to
identify relevant abstracts on which we generate LDA topic models.

in [226]. This work describes how a number of embedding-based relationships, further

summarized in the following section, quantify the fruitfulness of an individual query.

While we use these metrics to validate our approach in the previously mentioned work,

we leverage them here for the purpose of a numerical comparison between different

data sources.

7.3.2 Metrics for Hypothesis Ranking

Many have noted key challenges that surround evaluating hypothesis genera-

tion systems [41]. Because these systems attempt to locate novel research directions,

unknown to even those constructing the system itself, it is difficult to distinguish a

proposed hypothesis that is incorrect verses one that is true yet unintuitive. Due

to this conceptual limitation, many projects validate their system by simply redis-

covering a handful of “gold-standard” connections [246, 211, 104, 170]. Some few

projects show their utility beyond the gold-standard by incorporating expert analysis

and experiments [219, 18, 226]. While these results are important to show real-world

application areas for hypothesis generation, lab work is time consuming, expensive,

165

and clearly does not scale for large validation sets. For these reasons, in [226], we

present a number of metrics that estimate the potential of an automatically gen-

erated hypothesis. In that work we demonstrate the usefulness of these metrics to

identify recent fruitful hypotheses given historical training data. Additionally, we

follow the recommendations of our metrics to identify new gene treatment targets for

HIV associated neurocognitive disorder. In this work we use these same metrics to

numerically compare the performance of a hypothesis generation system trained on

abstracts against the same system trained on full text versions of the same papers.

Our metrics, which are summarized below, are predicated upon known prop-

erties of word embeddings. Mikolov et al. in [155] demonstrate that their word

embeddings, which were trained on 6 billion news articles from the Google News

corpus, capture a latent space with meaningful distances. For instance, the distance

between the vectors for “man” and “woman” is similar to that between “king” and

“queen”. This gender-encoding distance is similarly seen for other male-female re-

lationships across the English language, which is also observed in country-capital

relationships as well as that of verb tense. Furthermore, similar words are grouped

by their semantic meaning. We observe this property in our own embeddings trained

in our previous work on over 25 million Medline abstracts.

From these observations we derive the following metrics. Here, a and c are two

terms of a proposed hypothesis, the plausibility of which we would like to estimate.

T is an LDA topic model generated from a subset of papers relevant to a and c, and

Ti ∈ T is a single topic. Additionally, ε(x) is an embedding function that maps a

term or a topic into an embedding space with the previously described properties. In

the case of ε(Ti) we simply calculate a weighted centroid for topic Ti.

The simplest metric, L2, is simply the norm of ε(a) − ε(c). In our previous

work we also explored the cosine similarity of our term vectors, but L2 was our

166

higher performer. Next in complexity is CentrL2 that captures the distance between

the ε(a), ε(c) midpoint from the topic model. We observe that for a hypothesis to

be supported, at least one LDA cluster ought to center between the search terms.

Then, TopicPerWord relaxes the assumption that topics are best represented as a

centroid, and instead treats them as a weighed point cloud. Therefore, we average the

distance between each ε(x)∀x ∈ Ti, and (ε(a) + ε(c))/2, weighting them by P (x|Ti).

TopicCorr calculates the correlation between all topics in a topic model with respect

to both a and c. Put plainly, if a topic is close to a, is it also likely to be close to

c? Next, to calculate TopicWalkBetweenness we generate a nearest-neighbors

network containing ε(Ti)∀Ti ∈ T as well as ε(a) and ε(c). We observe that plausible

hypotheses have a higher connectivity within this network, which we calculate by

first finding a short path from a to c across Ti, and then calculating the average

betweenness of the nodes appearing along this path. Finally, in order to weight the

heuristics present in each of the previously described metrics, we fit a polynomial

based on our set of proposed hypothesis. This results in the best-performing metric

of PolyMulti.

7.3.3 Training Corpora

In order to understand the effect of different dataset features on an HG system,

we identify corpora that differ in terms size and document length. These data sets,

outlined in Table 7.1, include the PMC set of abstracts, PMC full-text, and five

iterative halves of Medline. We download each data source as XML from PMC,

and apply a series of preprocessing steps, described below. We note that while PMC

contains 4 million full-text articles, a substantial number either do not supply an

abstract, or are not available as XML. While other groups have found success parsing

167

PDF documents [248], we note that future journals contributing to PMC must supply

XML, and that parsing PDFs introduces a level of complexity that extends beyond

the scope of this work.

We apply AutoPhrase [193], porter stemming, and then stopword removal to

clean our text. Our stopword list comes from Arrowsmith’s list.1 As a result, we can

identify meaningful n-grams within our text that make our results more interpretable

and robust.

Because we cannot experimentally increase the size of our data sets, we instead

take iterative halves of Medline until it falls below one million abstracts. We do so

with random sampling without replacement, and we note that the smaller samples

are contained within the larger corpora. This sampling fills two requirements: firstly

it ensures that each is representative of the entire Medline data set, secondly it

preserves our ability to perform validation using the cut-year of 2014. This allows us

to identify connections that first occur in 2015 or later, which we will use to evaluate

our network’s performance.

We observe in our test corpora that Medline contains a significant number

of single-sentence abstracts, typically just a title, that represent old documents that

have not been entirely added. For instance, the document with PMID 711285 consists

of the single word “hypertension.” Additionally, Medline contains a number of non-

English documents, such as PMID 21014169, which is in Spanish. PMC, in contrast,

contains a smaller set of more recent documents, which consist of fewer short or

non-English abstracts.

1http://arrowsmith.psych.uic.edu/arrowsmith_uic/data/stopwords_pubmed

168

http://arrowsmith.psych.uic.edu/arrowsmith_uic/data/stopwords_pubmed

Corpus Total Words Unique Words Corpus Size Median Words
per Document

PMC Abstracts 109,987,863 673,389 1,086,704 102
PMC Full-Text 1,860,907,606 6,548,236 1,086,704 1594

Medline 1,852,059,044 2,410,130 24,284,910 71
1/2 Medline 923,679,660 1,505,672 12,142,455 71
1/4 Medline 460,384,928 920,734 6,071,227 71
1/8 Medline 229,452,214 565,270 3,035,613 71
1/16 Medline 114,385,607 349,174 1,517,806 71

Table 7.1: The above table displays the corpus size for each experimental corpus we
evaluated. Note, each corpus has been filtered to only include documents available
in XML and published before 2014. Additionally, the above numbers represent each
corpus after our initial text-cleaning process.

7.3.4 System Training and Query Process

After selecting our corpora, we run the entire Moliere network construction

process, described in detail in [225], to create our knowledge network. This process

begins with phrase mining and FastText [113], a word embedding tool that allows

us to numerically represent each n-gram in a dense, continuous, real-valued vector

space. For this chapter, we chose an embedding dimensionality of 100. These n-gram

embeddings allow us to project each document into the space as a centroid of its

components. From there, we create an approximate nearest-neighbors network for

abstract centroids and n-grams (separately) using FLANN [158]. We join these layers

with cross-cutting edges through TF-IDF. Lastly, we introduce data from the Unified

Medical Language System (UMLS) [144]. This human-curated network represents

ground-truth entities and connections that improve our network performance. Then

all link weights are renormalized. This entire process is automated by the source code

available on-line2.

We note that for validation purposes, we only include data published before

2http://github.com/jsybran/moliere

169

http://github.com/jsybran/moliere

2015. This means not only that we filter each corpora by publication date, but we also

use the 2014 archival release of the UMLS metathesaurus. Additionally, by including

the UMLS release to each corpus, we ensure that we are able to identify the needed

entities for the later validation process.

To generate a hypothesis using our system, one supplies queries in terms of

target words a and c (when performing a 1-to-1 query). From there, the system

identifies each in its internal knowledge network, and finds the shortest-path between

the two. We then extend shortest path to include the cloud of nearby documents by

first finding the set of p closest papers for each node along the shortest-path, and then

taking the union of each set. We then use PLDA+ [148] to identify k LDA topics

within the extracted cloud, which we interpret as our hypothesis result. For our tests

here, we select p = 5000 and k = 20.

7.3.5 Validation

We evaluate each instance of Moliere using the technique established in [226].

This process begins with a cut-year, which we chose to be 2014. From there, we extract

all SemMedDB predicates that were first published in 2015 or later [120], and create

a set of noise predicates through random sampling that have never been published.

This provides a set of positive (published) and negative (noise) hypotheses that our

networks have not seen.

To evaluate the performance of Moliere, we generate both positive and nega-

tive hypotheses in order to evaluate the resulting topic models of each using a number

of metrics. Each metric captures a different relationship between a, c, and the re-

sulting topic model. These often include distances using the trained vector space,

which makes the underling FastText results incredibly important. One of the met-

170

rics, PolyMultiple, is a polynomial combination of the others, with coefficients

obtained through black-box optimization. For the purposes of our tests here, we refit

this metric for each system provided a set of 1 million training iterations.

We then rank published and noise connections together with respect to each

metric in order to create ROC plots. We choose ROC curves as they have a direct

relationship to ranking and because our validation method includes an equal number

of positive and negative samples. The area under each curve indicates an instance’s

ability to distinguish published connections from noise. For a fair comparison between

systems, we select a validation set of 2,000, equal parts published and noise, and

use the same predicates on every system. In addition to the qualitative result, we

also measure memory, storage, and run-time requirements for each system. All of

our runtime measurements are run on 24 core machines with 126 Gb of memory,

connected to a ZFS parallel file system.

There is a potential issue applying our validation scheme to full-text papers.

We get our predicates from SemMedDB, a data source that only extracts information

from abstracts, and our validation makes the assumption that the published and noise

sets are both unknown to the system under examination. This implies that it could

be possible for validation predicates to appear in full-text data that we do not intend,

and there does not exist a reliable source of full-text predicates. This stated, we note

that authors typically attempt to highlight their key findings in their abstracts, and

for a predicate to appear in our published validation set, its first occurrence must date

after 2014. We find it unlikely that these new findings occur in any significant manner

within the details of full-text papers, and by using SemMedDB as a standard, we

are able to make better comparisons.

We additionally generate hypotheses regarding a recent highly-cited finding

on every system in order to quantitatively evaluate each in a real-world use case. The

171

paper “Mitochondrial Dynamics Controls T Cell Fate through Metabolic Program-

ming” (cited 131 times at time of writing) found in 2016 that the protein OPA1 is

required for effector T-cells and not for memory T-cells. We run two queries on our

systems to relate OPA1 to immune effector cells and OPA1 to memory cells.

7.4 Results

After training instances of Moliere on each corpus and performing our val-

idation task on each, we plot ROC curves for each across a number of metrics. We

summarize these results in Figure 7.2 and discuss specific comparisons in the following

sections.

7.4.1 PMC Abstracts vs Full-Text

We see from Table 7.1 that the median PMC full-text contains almost 16×

as many words as the median PMC abstract. For this reason, we expect that the

resulting embedding space is of higher quality — there is simply more training data.

We observe this when comparing the L2 metric because this metric only evaluates

hypothesis quality by taking the distance between a and c, rather than incorporating

topic model information. The full-text L2 area is 0.777 while the abstract L2 result

is 0.678. This improvement is seen across many metrics, especially PolyMultiple,

the trained polynomial combination of other metrics. This is unsurprising because

most metrics rely on the embedding space.

Looking practically we observe that constructing our full-text network takes

7× the runtime, and twice as much storage. Running each query takes 45× longer (1h

15m for full-text vs. 1m 40s for abstracts), and substantially more memory (1.4Gb

vs. 0.41Gb). This is primarily due to the runtime of PLDA+, as it must read whole

172

• L2 • CentrL2 • TopicPerWord • TopicCorr • TopicWalkBtwn • PolyMulti
PMC Ab. 0.678 0.681 0.671 0.670 0.629 0.718

PMC F.T. 0.777 0.738 0.680 0.696 0.674 0.795
Medline 0.651 0.584 0.691 0.628 0.565 0.718

1/2 Medline 0.643 0.578 0.684 0.615 0.580 0.717
1/4 Medline 0.634 0.576 0.677 0.603 0.556 0.700
1/8 Medline 0.621 0.566 0.666 0.593 0.570 0.691

1/16 Medline 0.612 0.572 0.658 0.585 0.569 0.684

Figure 7.2: Above are the ROC curves for each experiment, accompanied by the
AUC for key metrics, as described in [226]. We evaluate a set of 2,000 predicates
across each network to calculate each curve. Note that the L2 metric, which relies
entirely on simple vector embeddings, is the best indication of embedding quality,
while the PolyMulti metric combines others for peak performance.

documents multiple times in order to fit a topic model. Other differences in the query

process come from network topology differences that result from the drastic change in

document length. Because we use TF-IDF to make cross-cutting connections between

documents and keywords, we see that each document node has a substantially higher

degree.

These network differences also account for qualitative differences in result qual-

ity between the PMC abstract and full-text systems. The full-text system contains

many more keywords that occur in practically every paper, such as gene, mouse, and

cell. While these words are certainly present in abstracts as well, their prevalence in

methods and experimental sections biases them heavily in full text. Yet, we find their

173

removal would substantially detract from our ability to interpret topics in the case of

abstracts.

Looking at the best topics for the query between OPA1 and effector T-Cells,

we see that the best topic for the abstract system has the leading words “MGM1,”

“mitochondrial,” “cell” and “GTPase” while the full-text topic has the leading words

“cell,” “mitochondrion,” “mitochondrial,” and “protein.” While both seem to capture

the same content on a broad level, the abstract topic is much more focused on a single

entity, MGM1 (which is a mitochondrial GTPase related to OPA1). Still, neither

network properly ranks effector T-Cells above memory T-Cells in relation to OPA1.

Overall, we see that abstracts give better qualitative and interpretable results

using less time and memory, but full-text delivers a better vector space, and in turn

allows for better evaluation via our metrics. We anticipate that a hybrid approach

that constructs the system with an embedding space trained on full-text but only

abstract text for the purposes of running queries would be optimal.

7.4.2 Medline Scaling Study

Observing the results in Figure 7.2, we see the effect of adding additional pa-

pers of similar quality to our HG system. Starting with the 1/16 sample of Medline

and working up to the whole data set, we see a consistent improvement across all re-

sults. In a similar manner to the above, our metric increase seems to come primarily

from an increase in embedding space quality. We find that increasing our corpus size

across the Medline experiments only has a marginal increase in L2 performance,

ranging from an ROC area of 0.604 in the 1/16 sample to 0.638 in the 1/2 sample.

Surprisingly, increasing the number of abstracts from the 1/2 sample to the entirety of

Medline has practically no effect on the resulting ROC curves. We believe this is a

174

side effect pertaining to the prevalence of very short Medline articles, as mentioned

above.

Additionally, there is a discrepancy between our results here and those found

in our previous work [226] wherein we achieved an ROC score of 0.833 on the same

corpus. In that case we created our network using an embedding space of dimen-

sionality 500, as opposed to here where we use 100. In that case, or L2 metric was

0.783, which indicates that the higher dimensionality results in a significantly better

embedding space. In this study, we chose the smaller dimensionality to match the

(typically) smaller corpus size. Although further study is needed, we anticipate that

given a higher vector dimensionality for these studies, we would see a greater differ-

ence between the Medline subsets as the higher dimensionality also implies it would

be hard to train on smaller data sets.

In terms of performance, there is a bit of a difference in runtime between the

scaled networks. The 1/16 system is able to run queries in about a minute and a half,

using about 0.6 Gb of memory. Meanwhile the 1/2 system requires about 3 minutes

and 15 seconds, and 3 Gb of memory. We note that the difference in runtime and

memory usage primarily relates to the size of our overall network file (21 Gb for the

1/2 and 3.2 Gb for the 1/16 sample). Our query algorithms rely on our parallel file

system to help subset, load, and process this network in parallel, which helps keep our

runtime down. It is also worth noting that that the runtime of PLDA+ as well as our

evaluation metrics is unchanged by the growing size of our network. Each query still

results in a similar number sized abstract cloud, which takes just as long to produce

a topic model for.

Qualitatively, we also see a slight increase in result specificity as the corpus size

increases. This is not surprising as the 1/16 sample likely excludes many important

papers that would help to explain important connection. In the case of OPA1 and

175

effector T-Cells, as previously discussed, we see the 1/16 best topic contains key words

such as “mitochondri,” “express,” “regul,” “activ,” while the best topic for the 1/2

system produces a best topic of “protein,” “mitochondri,” “import,” “mitochondria.”

Although the 1/2 sample is distinctly less informative from the PMC results above,

its focus is much narrower than that of the 1/16 sample.

7.4.3 Cross-Comparison of Hypotheses using PMC and Med-

line

We observe in Table 7.1 that all of Medline contains approximately the

same number of words as the PMC full-text dataset. Additionally, we observe that

the 1/16 sample of Medline contains approximately the same number of documents

as our PMC datasets. Furthermore we note that the PMC abstract set is a subset of

Medline. This allows us to compare the two sources, and in doing so understand

the effect document length, count, and quality have on our results.

We see that the PMC abstract set has approximately the same ROC area as

the 1/2 Medline set, yet has a similar number of words as the 1/16 Medline set.

This shows us that a higher number of words per document is a big contributor to

HG success. Additionally, this increase in performance only increases the average

runtime by ten seconds — the PMC abstract system performs queries at about the

same rate as the smallest Medline sample due to their similar network size.

We hypothesize that a future study wherein we only include Medline articles

of sufficient length (at least two sentences) would be our best performer, or at least

compete with the full-text results. From our scaling tests we see that additional

papers certainly improve results, and our cross comparison shows that a lower median

document length is detrimental to HG results. For these reasons a pruned set of

176

Medline articles would have a larger median document length, but also contain

an order of magnitude more documents than the PMC set alone. A benefit of this

strategy would likely be a substantially smaller runtime when compared to the full-

text data set, as it would likely resemble the full Medline set in this aspect.

Looking quantitatively, comparing the OPA1—T-cell examples above, we note

that sufficiently many abstracts provides better topics overall when compared to the

full-text network. This is because we see many frequent terms in full-text, such as

“fig,” (meaning figure) that convey no additional content for our purposes. We are

reluctant, though, to expand our stopword list to include words like “fig,” or “ref”

as their meanings in different contexts can be important, such as a fig-tree, or refer

to the gene “ALYREF.” While additional development into entity extraction efforts

could address these concerns directly, we note that the difference in author intent

between abstract and full-text documents will still imply a difference in the sort of

topics we will uncover.

7.5 Tradeoffs

Interpreting our results from above, we can see a number of clear tradeoffs

for HG when it comes to corpus quality. The key issue is runtime vs. result quality,

but other challenges such as data availability can also lead to tradeoffs beyond those

captured in ROC curves.

We observe that longer documents require more processing — they often have

figures, extraneous text, and formulas, additionally, they often are distributed via

PDF or were scanned through OCR. These concerns do not even address legal chal-

lenges associated with collecting substantial collections of published papers. As a

result, uncovering their content for the purpose of HG is a non-trivial technical chal-

177

lenge that is likely to introduce noise. We circumvented these issues by restricting

our discussion to only papers available via XML, and we still faced many of these

noise-related challenges.

Yet, our results indicate longer documents produce higher quality systems, as-

suming one can handle the drastically increased runtime. This runtime limit becomes

infeasible for many when considering large batch queries. For instance, to find candi-

date genes related to a specific disease, we must run over 40,000 query pairs (one for

each gene), and while these tasks are independent, we run into logistical challenges

reserving the computational resources necessary to run 40,000 queries if each takes

over an hour.

A more subtle tradeoff comes from our choice of topic models over other discov-

ery methods. Watson for Drug Discovery [209] uses many preprocessing techniques

to make the runtime of individual queries much faster, which allow it to support

full-text documents. A potential downside to this is that users may want to run

queries for entities that have not been identified. While Watson is capable of han-

dling these cases for many of its sub-systems, there are a number of query types that

require preprocessed input. Moliere’s preprocessing involves identifying n-grams,

which can pose similar problems, but then our approach compensates by facilitating

queries between any pair of nodes, even papers and UMLS terms. But, as described

in our results, the method introduces document length as a significant factor in our

algorithmic complexity.

7.6 Lessons Learned and Open Problems

Effect of Hyperparameters. Our network construction and validation method

have a few hyperparameters that further study could help us inform their values. In

178

the network construction process, these include the dimensionality of our embedding

space, the number of nearest-neighbors, and the weighting between layers of our

network. Following the example of Mikolov et al. [153, 113], we have previously

used an embedding space of 500, but in this work we reduce that to 100. We do so

to see consistent performance across a number of corpus sizes, but we see reduced

performance in our full-Medline experiment (when compared to our previous results

in [226]). Therefore, we note that larger corpus sizes ought to correlate with higher

dimensionality vector spaces. However, further study is necessary to understand the

effect of our other network construction parameters.

In the query process, the two main hyperparameters are cloud size and number

of topics. We select a cloud of 5,000 documents per node along our shortest-path so

that we have a sufficiently large sub-corpus even on paths with few hops. Clearly

there is a balance between quantity and quality — the more documents we select,

more of the documents will be unrelated to our query. With regard to the number of

topics, we find that fewer topics lead to more interpretable results, while more topics

tend to aid in our automatic validation. Yet, we have only experimented with topic

values between 10 and 100 (20 for shown results).

Preprocessing. Automatic summarization and preprocessed topic models could

each improve the runtime of full-text systems. Automatic summarization should

improve our signal-to-noise ratio and reduce the number of edges incident to each

paper. We could also generate a topic model for the paragraphs within each paper.

This may allow us to assemble a topic model for our abstract cloud by combining

topics that are similar across multiple full-text documents. This would be much

faster than processing these documents directly for each query.

Domain Relevance. While we explore the effect of corpus size and document

length in this work, we focus only on biomedical texts. We hypothesize that we

179

could improve Moliere results through the inclusion of additional documents from

other fields such as physics, or more general sources such as Wikipedia. These other

sources would provide additional examples of technical writing to inform our embed-

ding space, but may also implicitly diminish the effect non-medical terminology has

in our network. Because our cross-cutting edges between documents and keywords

are weighted by TF-IDF, when we include documents from other fields, we expect

that many methodology-related keywords that are shared between disciplines (such

as “study,” and “experiment”) will decrease in relevance as they are shared in practi-

cally every paper. This method may allow us to bias against phrases that many may

consider stopwords, without explicit creating a stopword list, which as we mention

above poses its own challenges.

7.7 Deployment Challenges

Parsing full-text papers is a major challenge for HG systems. We found that

only a subset of 1.7 million out of the 4.5 million documents in PubMed Central

(PMC) was in XML format. Even then, some of the documents did not have an

abstract (sometimes not the XML tag and sometimes not even the string ”abstract”

in the file). Our strategy was chosen to remove poor quality XML parsings. We first

parsed the XML of papers according to the listed specifications, but only successfully

parsed 0.6 million documents. By looking at the patterns that were missed (e.g. tags

nested in others like: [article meta] → [title group] → [article title]). We made our

patterns less constraining to allow for more documents to be passed into the dataset.

We ended up with 1.3 million documents with full-text and abstracts being parsed.

When looking at some of the documents that failed, we found that they could

have simply not tagged or failed XML parsers (e.g., with chains of emails or unrec-

180

ognized symbols). A similar parsing task for abstracts was much simpler. As long as

a paper had the abstract tagged, it was easy to add it to our dataset. However, we

added abstracts if and only if the full-text was properly parsed.

After stemming we were still left with the task of reducing the number of

unique tokens during parsing. There was about 10 times the number of unique words

within full-text documents than there were within the abstracts only. Even if we were

comparing the larger set of abstracts to Medline, there were many fewer unique

words (2.4M in all of Medline vs. 6.5M in PMC full-text). The number of unique

words increased dramatically with every new addition of a particular document.

The data storage requirements were highest, not at the end, but in the middle

of the experiment when running AutoPhrase. We started with 129 GB of textual

data in XML format for 1.7 million documents from PMC (Downloaded in November

2017). After text parsing and cleaning, we were left with 24 GB for full text and only

1.4 GB for abstracts. Initially, we relied on ToPMine for our phrase mining [69] but

had to switch after encountering memory and runtime problems. Although we were

using computers with 500 GB of RAM, it was still not enough. We had to switch to a

computer with 2 TB of RAM just to avoid crashing. When finally getting ToPMine

to run properly, it was still too slow. Since our cluster only allows for jobs to run for

72 hours at a time, it was simply not able to finish running on the full-text dataset.

In order to mine phrases on full-texts we switched to AutoPhrase [193]. It

was not only much faster, but also did not have the strict memory requirements that

ToPMine had. The information that was saved for the model was large (about 100

GB for the full text), but it was irrelevant since it was already using more than that in

RAM. The process of topic modeling was simply memory intensive and unavoidable.

Although we created the phrase model for the abstract dataset on a 24 core computer,

it was still 4× faster than the full-text phrase modeling on a 64 core computer. This

181

amounted to an almost linear trend assuming processing scaled linearly. The ratio of

runtime accounted for the number of cores, but not any other computer architecture

specifics, (4 ∗ 64/24 ≈ 10.7) was almost equivalent to the difference in the data size

(24Gb/1.4Gb ≈ 17).

7.8 Conclusion

In this chapter, we systematically study the effects different types and sizes of

data have on knowledge network based hypothesis generation systems. The experi-

mental work is performed using Moliere [225] which extends traditional network-

based HG systems using topic modeling and various hypothesis ranking techniques.

The computational evaluation is demonstrated using seven different corpora in order

to answer four key questions.

What effect does corpus size and document length have on results? To

answer this we compare the performance using ROC curves derived from our system

when trained on PMC and Medline data sets. We find that while increased corpus

size does increase performance, document length is a better indication. Our results

show that selecting a corpus with a greater median document length of 30 words can

have the same effect as selecting a corpus that is eight times larger. However, we

must emphasize that much longer documents typically result in less interpretable (or

too general) topic models of the hypotheses.

How sensitive is a general-purpose HG system to hyperparameter value

or input quality? Moliere is a general-purpose HG system that accepts queries

for any terms covered in its input literature. Because of its scale, we anticipate that

proper parameter tuning would require an analysis of more term pairs than is feasible.

This challenge is not present in more specialized systems, such as those targeting

182

specific types of connections (gene-disease) or further specialized systems designed to

explore a specific gene. Still, we can explore our system’s performance across a number

of datasets given a fixed parameter setting in order to understand the hyperparamter’s

stability. Our experiments show that a system trained on PMC abstracts outperforms

one trained on a similar set of abstracts from Medline. Looking at simple metrics,

such as median document length and the length distributions, we observe a significant

quality difference. For this reason we conclude that quality is more important than

quantity for HG.

How many papers does a HG system need? We found that a set of at least

1-million papers is sufficient to achieve reasonable results, but more papers seem

to improve result quality provided the underlying models are complex enough to

capture the additional features. These additional papers improve the performance of

our embedding space, which underpins much of the Moliere query process, but this

effect wanes if the dimensionality is too low.

Are abstracts enough? We show that the tradeoff between quality and runtime is

drastic when evaluating Moliere queries on full-text documents. We compare our

system trained on PMC abstracts against our system trained on the full-text versions

of the same papers. The longer documents cause longer topic modeling runtimes and

result in a ROC area increase of 0.077 and a runtime increase from 100 seconds to 75

minutes. While this tradeoff may be acceptable for some, we note that many batch

query applications may not be able to afford this marginal improvement.

183

Chapter 8

AGATHA: Automatic

Graph-mining And Transformer

based Hypothesis generation

Approach

Abstract

Medical research is risky and expensive. Drug discovery, as an example, re-

quires that researchers efficiently winnow thousands of potential targets to a small

candidate set for more thorough evaluation. However, research groups spend sig-

nificant time and money to perform the experiments necessary to determine this

candidate set long before seeing intermediate results. Hypothesis generation systems

address this challenge by mining the wealth of publicly available scientific informa-

tion to predict plausible research directions. We present AGATHA, a deep-learning

hypothesis generation system that can introduce data-driven insights earlier in the

184

discovery process. Through a learned ranking criteria, this system quickly prioritizes

plausible term-pairs among entity sets, allowing us to recommend new research direc-

tions. We massively validate our system with a temporal holdout wherein we predict

connections first introduced after 2015 using data published beforehand. We ad-

ditionally explore biomedical sub-domains, and demonstrate AGATHA’s predictive

capacity across the twenty most popular relationship types. This system achieves

best-in-class performance on an established benchmark, and demonstrates high rec-

ommendation scores across subdomains. Additionally, AGATHA is fast and scalable,

is constructed using distributed data preparation and training, and can analyze thou-

sands of hypotheses per-minute. Reproducibility: All code, experimental data, and

pre-trained models are available online: sybrandt.com/2020/agatha .

8.1 Introduction

As the rate of global scientific output continues to climb [233], an increasing

portion of the biomedical discovery process is becoming a “big data” problem. For

instance, the US National Library of Medicine’s (NLM) database of biomedical ab-

stracts, MEDLINE, has steadily increased the number of papers added per-year, and

has added significantly over 800,000 papers every year since 2015 [1]. This wealth of

scientific knowledge comes with the overhead cost payed by practitioners who often

struggle to keep up with the state-of-the-art. In 2018 alone, there was an average of

103 papers added to MEDLINE per hour, or one new paper every 35 seconds.

Buried within the large and growing MEDLINE database are many undiscov-

ered implicit connections — those relationships that are implicitly discoverable, yet

have not been identified by the research community. One connection of this type was

first proposed and subsequently discovered by Swanson and Smalheiser in the mid-to-

185

http://sybrandt.com/2020/agatha

late 1980’s [221]. Their landmark finding, using only the co-occurrences of keywords

across MEDLINE titles, was to establish a connection between fish oil and Raynaud’s

Syndrome [219]. At that time, it was known that fish oil modified various bodily

properties, such as blood viscosity, which were key factors pertaining to Raynaud’s

syndrome. However, while each explicit relationship was known, the implicit rela-

tionship was not discovered before Swanson’s ARROWSMITH hypothesis generation

system identified the connection algorithmically.

Modern advances in machine learning, specifically in the realms of text and

graph mining, enable contemporary hypothesis generation systems to identify fruit-

ful new research directions while taking far more than title co-occurrence rates into

account. Modern systems predict missing links on domain specific graphs, such

as BioGraph on gene-disease network [142] or MeTeOR on the term-co-occurrence

graph [249]. Other systems focus on identifying relevant key terms, similar to Swan-

son’s work, but using modern techniques. For instance, Jha et al. study the evolution

of word embedding spaces over time to learn contemporary trends relevant to partic-

ular queries [109]. Further work by Jha et al. continues to study the joint evolution

of corpora and ontologies within biomedical research [110]. Another approach is

to produce visualizations for interpretation by domain scientists [208], such as the

closed-source Watson for Drug Discovery [51]. Moliere, our prior hypothesis genera-

tion system [225], produces data for scientific interpretation in the form of LDA topic

models [29]. Additional work produced heuristically-backed ranking criteria to help

automate the analysis process [226].

While prior hypothesis generation systems have been valuable in real-world

explorations, such as Swanson’s fish-old and Raynaud’s syndom finding [219], Wat-

son’s discovery of ALS treatments [51], or Moliere’s discovery of DDX3 inhibition

as a treatment for HIV-associated neurodegenerative disease [18], there remains sig-

186

nificant drawbacks to the state of the art. Most systems require significant human

oversight to produce useful results [209, 51, 225], or are only tested on very small

evaluation sets [109, 110, 82, 188]. Systems still using the “ABC” model of discov-

ery [109, 110, 121], posed by Swanson in 1986 [219], face many known limitations

such as reduced scalabiltiy and a bias towards incremental discoveries [201].

To overcome these limitations, we present a new hypothesis generation system

that scales to the entirety of biomedical literature, and is backed by efficient deep-

learning techniques to enable thousands of queries a minute, enabling new types of

queries. This system constructs a new semantic multi-layered graph, and places its

millions of nodes into a shared embedding. From there, we use a transformer encoder

architecture [236] to learn a ranking criteria between regions of our semantic graph

and the plausibility of new research connections. Because our graph spans all of

MEDLINE, we are able to generate hypotheses from a large range of biomedical

subdomains. Other than our prior work [225], we are unaware of any system that

is capable of the same breadth of cross-domain discovery that is also open source, or

even just publicly available for comparison. Because we efficiently pre-process our

graph and its embeddings, we can perform hundreds of queries per-second on GPU,

which enables new many-to-many recommendation queries that were not previously

feasible. Because we replace our heuristically determined ranking criteria from our

prior work [226] with a learned ranking criteria, we achieve significantly improved

performance, as demonstrated by an increase in benchmark performance using the

same training and validation from and ROC AUC of 0.718 [226] to 0.901.

To expand the interpretabiliy of our proposed system’s output, we additionally

provide an updated version of our prior topic-modeling approach to operate efficiently

on the much larger sentence-focused semantic graph. While these topic-model queries

do take longer (a few minutes, compared to a fraction of a second), they can provide

187

descriptive results for biomedical scientists. Because our topic-model query process

selects relevant sentences, as opposed to the prior model that selected whole abstracts,

we observe that our resulting topic models are more descriptive regarding the query

at hand. We envision that these descriptive queries can supplement the automated

discovery enabled by the deep-learning model.

Our contribution:

(1) We introduce a novel approach to construct large semantic graphs that use the

granularity of sentences to represent documents. These graphs are constructed using

a pipeline of state of the art NLP techniques that have been customized for under-

standing scientific text, including SciBERT [22] and ScispaCy [163].

(2) We deploy our deep-learning transformer-based model that trained to predict

likely connections between term-pairs at scale. This is done by embedding our pro-

posed semantic graph to encode all sentences, entities, n-grams, lemmas, UMLS terms,

MeSH terms, chemical identifiers, and SemRep predicates [17] in a common space us-

ing the PyTorch-BigGraph embedding [139].

(3) We validate our system using the massive validation techniques presented in [226],

and also demonstrate the ability of AGATHA to generalize across biomedical subdo-

mains. For instance, in the scope of “Gene - Cell Function” relationships, our system

has a top-10 average precision of 0.83, and a mean-reciprocal-rank of 0.61.

This system is open-source, easily installed, and all prepared data and trained

models are available to perform hypothesis queries at sybrandt.com/2020/agatha .

8.2 Background

Our proposed system, AGATHA, is a novel deep-learning approach to hypoth-

esis generation, enabled by recent advances in text- and graph-mining techniques.

188

http://sybrandt.com/2020/agatha

This section expounds our conceptual influences and incorporated technologies.

Hypothesis Generation Systems. Swanson posited that undiscovered public knowl-

edge, those facts that are implicitly available but not explicitly known, would acceler-

ate scientific discovery if an automated system were capable of returning them [221].

His work established what is now known as the “A-B-C” model of literature-based

discovery [4]. This formulation follow that a hypothesis generation system, given

two terms A and C, should uncover some likely B-terms that explain the quality of

a potential A − B − C connection. This technique fueled Swanson’s own system,

ARROWSMITH [219], and still forms the backbone of some contemporary succes-

sors [121].

The ABC model has significant limitations. Firstly, many real-world scientific

hypotheses cannot be so easily distilled into a single set of “first-order” interactions.

Instead, many connections may be better described as longer A− B − C − . . . con-

nection paths or more complicated structures. Secondly, any system that returns

only a set of B-terms will be limited to small-scale searches unless it also provides an

automatic way to quantify connection plausibility. Otherwise, biomedical researchers

will spend a significant amount of valuable time studying query results, rather than

performing necessary experiments.

Our former approach to address these challenges is posed by the Moliere sys-

tem [225], and its accompanying plausibility ranking criteria [226]. This system ex-

pands on the A − B − C model by describing a range of connection patterns, as

represented by an LDA topic model [29], when receiving an A,C query. To do so, the

Moliere system first finds a short-path of interactions bridging the A−C connection

from within a large semantic graph. This structure includes nodes that correspond

to different entity types that are both textual and biomedical, such as abstracts,

predicate statements, genes, diseases, proteins, etc. Edges between entities indicate

189

similarity. For instance, an edge may exist between an abstract and all genes dis-

cussed within it, or between two proteins that are discussed in similar contexts. Using

the short-path discovered within the semantic network between A and C, the Moliere

system also reports an LDA topic model [29]. This model summarizes popular ar-

eas of conversation pertaining to abstracts identified near to the returned path. As

a result, the user can view various fuzzy clusters of entities and the importance of

interesting concepts across documents.

To reduce the burden of topic-model analysis on biomedical researchers, the

Moliere system is augmented by a range of techniques that automatically quantify

the plausibility of the query based on its resulting topic models. Our measures, such

as the embedding-based similarity between keywords and topics, as well as network

analytic measures based on the topic-nearest-neighbors network, were heuristically

backed, and were combined into a meta-measure to best understand potential hy-

potheses. Using this technique, we both validated the overall performance of the

Moliere system, and used it to identify a new gene-treatment target for HIV-associated

neurodegenerative disease through the inhibition of DDX3X [10].

The work presented here departs from heuristically-backed prior necessities.

Our AGATHA semantic graph is built using sentences, not abstracts, as the primary

node type, and uses ScispaCy [163] in order to produce higher-quality graph content

pertaining to key terms and entities. The resulting graph, with a different overall

schema, is then embedded by the PyTorch-BigGraph heterogeneous graph embedding

technique [139]. Now, instead of performing expensive short-path queries, generating

topic models, or applying heuristically-backed measures, we formulate knowledge dis-

covery as a deep-learning problem, and learn to rank fruitful new research directions

directly from the data using a combination of graph embeddings and a transformer-

encoder network [236].

190

Related and Incorporated Technologies. In order to prepare the wealth of

biomedical information stored in Medline abstracts for deep-learning queries, we lever-

age a range of software tools and machine learning techniques.

SemRep [17] is a utility that extracts predicate statements in the form of “subject-

verb-object” from the entirety of Medline. This utility further classifies its predicate

components into the set coded keywords provided by the Unified Medical Language

System (UMLS), and a small set of coded verb-types. These UMLS terms provide a

way to unify synonyms and acronyms from across medicine. Additionally, all content

extracted by SemRep is provided in the Semantic Medical Database (SemMedDB)

for direct use.

Dask [178] is a library for writing distributed data-processing pipelines in Python.

As a result of using this library, AGATHA data preparation is efficiently completed

across a large cluster of workers. Furthermore, this library allows us to implement

modular functional components of the processing pipeline, enabling easier extensions.

ScispaCy [163], a version of the popular spaCy text processing library provided

by AllenNLP, is designed to properly handle scientific text. Using a deep-learning

approach for its part-of-speech tagging, dependency parsing, and entity recognition,

this tool achieves state-of-the-art performance on a range of scientific and biomedical

linguistic benchmarks. Additionally, this software is optimized sufficiently to operate

on each sentence of MEDLINE, which numbers over 188 million as of 2020.

SciBert [22] is a version of the BERT transformer model for scientific language. This

model learns representations for each word part in a given sentence. Word parts are

derived from the WordPiece algorithm [252] when trained on a sample of scientific

full-text papers. The resulting embeddings for each word part are determined by its

relationship to all other word parts. As a result, the output word-part embeddings

are highly content-dependent, and homographs, words with the same spelling but

191

different meanings, receive significantly different representations. We use this model

to learn embeddings per-sentence that capture scientific content. These embeddings

inform the sentence-nearest-neighbors network component of our semantic graph.

FAISS [112], the open-source similarity-search utility, is capable of computing an

approximate nearest-neighbors network for huge point clouds. We adapt this tool for

use within Dask in order to compute the nearest neighbors edges between the SciBert

embeddings for all sentences in MEDLINE. This technique scales to various graph

sizes by its modular component set, and we choose PQ-quantization and k-means

bucketing to reduce the dimensionality of our sentences, and reduce the search space

per-query.

PyTorch-BigGraph (PTBG) [139] is an open-source, large-scale, distributed graph-

embedding technique aimed at heterogeneous information networks [198]. These

graphs consist of nodes of various types, connected by typed edges. We define each

node and relationship type contained in our semantic graph as input to this embed-

ding technique. PTBG distributes edges such that all machines compute on disjoint

node-sets. We choose to encode edges through the dot product of transformed em-

beddings, which we explain in more detail in Section 8.3. Using the Hogwild! [176]

optimization technique, distributed workers are unrestricted by locking while per-

forming this optimization, which has an added regularization effect.

The Transformer [236] model is built with multi-headed attention. Conceptually,

this mechanism works by learning weighted averages per-element of the input se-

quence, over the entire input sequence. Specifically, this includes three projections

of each element’s embedding, represented as packed matrices: Q, K, and V . Each

projection functions differently, with Q acting as a “query” that is compared against

“keys” K and “values” V . The specific mechanism is defined as follows, with dk

192

representing the dimensionality of each Q and K embedding:

Attention(Q,K, V) = softmax

(
QKᵀ

√
dk

)
V (8.1)

The “multi-headed” aspect of the transformer indicates that the attention

mechanism is applied multiple times per-layer, and recombined to form a joint repre-

sentation. If W (x) indicates a matrix of learned weights, then this operation is defined

as:

MultiHead(X) = [h1; . . . ;hk]W
(4)

where hi = Attention
(
XW

(1)
i , XW

(2)
i , XW

(3)
i

) (8.2)

While the transformer model was initial proposed for sequence-to-sequence

modeling, and includes both an “encoder” and “decoder” stack of attention layers,

we note that the self-attention layer fundamentally performs a set operation. In fact,

text models such as BERT [63] require the addition of a positional encoding to each

input token to ensure that positional information is not erased by self-attention. By

using only the encoder half of the transformer model, and by omitting any positional

mask or encoding, we apply the self-attention mechanism to understand input sets

while reducing the effect of the arbitrary ordering imposed by a sequence model. One

encoder layer is defined as:

E(X) = LayerNorm(FF (α) + α)

where FF (α) = max
(
0, αW (5)

)
W (6)

and α = LayerNorm(MultiHead(X) +X)

(8.3)

By composing multiple E encoders, we create the full encoder stack. While

some order-sensitive operations do exist within the encoder stack, such as the opera-

193

Figure 8.1: System Diagram of the AGATHA process.

Figure 8.2: AGATHA multi-layered graph schema.

tion that merges multiple attention heads into a joint feed-forward layer, we observe

these artifacts are overcome during the training process by randomizing the order of

input elements.

8.3 Data Preparation

In order to convert the MEDLINE raw text into a form that enables the deep-

learning of scientific hypotheses, we propose a significant pre-processing pipeline. In

short, we begin by downloading relevant data from Medline and SemMedDB, then

extract all relevant information per-sentence to formulate a semantic graph, following

the schema in Figure 8.2. From there, we embed the entire network using PTBG [139].

We then formulate training-set SemRep predicates [17] as sets of node embeddings

for our proposed transformer encoder neural-network model, depicted in Figure 8.3.

This pipeline overall is depicted in Figure 8.1, and is expound below.

194

Text Pre-Processing. We begin with raw MEDLINE XML files 1. Each can be

independently processed for a majority of the AGATHA distributed data processing

operations. We attempt to extract the paper id (PMID), version, title, abstract text,

date of first occurrence, keywords, and publication language. Next, we filter out

non-English documents. About 15% of MEDLINE documents were not originally

published in English, and of those translated a vast majority contain only a title. In

order to validate our system, we additionally discard any document that is dated after

January 1st, 2015.

We split the text of each abstract into sentences. For each sentence, we identify

parts-of-speech, dependency tags, and named entities using ScispaCy [163]. We ran

into performance challenges when parsing longer texts. Therefore, we first perform

sentence splitting through a rules-based system provided by the Natural Language

Toolkit (NLTK) [150]. The result of this process is a record per-sentence, including

the title, that contains all metadata associated with the original abstract, as well as

all algorithmically identified annotations.

Using the lemma information of each sentence, we perform n-gram mining in

order to identify common phrases that may not have been picked up by entity detec-

tion. In our prior work [225], we leveraged a then-contemporary phrase mining tool

ToPMine [69] to extract similar phrases. However, in our new distributed paradigm,

we found it to be more efficient and produce more useful results to devise a simple

rules-based system built on top of ScispaCy lemma information. First, we provide a

set of part-of-speech tags we mark as “interesting” from the perspective of n-gram

mining. These are: nouns, verbs, adjectives, proper nouns, adverbs, interjections, and

“other.” We additionally supply a short stopword list, and assert that stop words

1At the time of writing, the bulk release at the end of 2019 contained 1,014 files, containing
nearly 30-million documents

195

are uninteresting. Then, for each sentence, we produce the set of n-grams of length

two-to-four that both start and end with an interesting lemma. We record any n-

gram that achieves an overall support of at least 100. However, we find it necessary

to introduce an approximation factor, that an n-gram must have a minimum support

of five within a datafile for those occurrences to count.

Semantic Graph Construction. After splitting sentences, while simultaneously

identifying lemmas, entities and n-grams, we can begin constructing the semantic

graph. The semantic graph, as a whole, contains all textual and biomedical entities

within MEDLINE, and follows the schema depicted in Figure 8.2. We begin this

process by creating edges between similar sentences. The simplest edge we add is

that between two adjacent sentences from the same abstract. For instance, sentence

i in abstract A will produce edges to Ai−1 and Ai+1, with the paper title serving as

A0.

To capture edges between similar sentences in different abstracts, we compute

an approximate-nearest-neighbors network on the set of sentence embeddings. We

derive these embeddings from the average of the final hidden layer of the SciBert 2

NLP model for scientific text [22]. This 768-dimensional embedding captures context-

sensitive content regarding each word in each sentence.

However, we have over 155-million sentences in the 2015 validation instance

of AGATHA, which makes performing a nearest-neighbors search per-sentence (typ-

ically O(n2d)) computationally difficult. Therefore, we leverage FAISS to perform

dimensionality reduction, as well as approximate-nearest neighbors, in a distributed

setting. First, we collect a one-percent sample of all embeddings on a single ma-

chine, wherein we perform product quantization (PQ) [106]. This technique learns

2We specifically use the pre-trained “scibert-scivocab-uncased” model, which was trained on over
1.14-million full-text papers.

196

an efficient bit representation of each embedding. We select parameters for PQ such

that each dimension of the input embedding receives a unique bit in the output code.

We use 96-quantizers, and each considers a disjoint an 8-dimensional chunk of the

768-dimensional SciBert embeddings. Each quantizer then learns to map its input

real-valued chunk into output 8-bit codes, such that similar input chunks receive

output codes with low hamming distance. This technique reduces size of SciBert

embeddings by a factor of 32.

Still using the 1% sample on one machine, FAISS performs k-Means over PQ

codes in order to partition the reduced space into self-similar buckets. By storing the

centroid of each bucket, we can later select a relevant sub-space pertaining to each

input query, dramatically reducing the search space. We select 2048 partitions to

divide the space, and when performing a query, each input embedding is compared

to all embeddings residing in the 16 most-similar buckets.

Once the PQ quantizers and k-means buckets are determined, the initial pa-

rameters are distributed to each machine in the cluster. Every sentence can be added

to the FAISS nearest-neighbors index structure in parallel, and then the reduced

codes and buckets can be merged in-memory on one machine. We again distributed

the nearest-neighbors index, now containing all 155-million sentence codes, to each

machine in the cluster. In parallel, these machines can identify relevant buckets per-

point, and record their 25 approximate nearest-neighbors. If we have m machines,

each with p cores, and search q = 16 of the b = 2048 buckets-per-query, we reduce

complexity for identifying all nearest-neighbors from O(dn2) to O (qdn2/32bpm).

We additionally add simpler sentence-occurrence edges for lemmas, n-grams

and entities. In each case, we produce an edge between s and x provided that lemma,

entity, n-gram, or metadata-keyword x occurs in sentence s. The last node type

is SemRep predicates [17]. Each has associated metadata, such as the sentence in

197

which it occurred, its raw text, and its relevant UMLS coded terms. For each unique

subject-verb-object triple, we create a node in the semantic graph. We then create

edges from that node to each relevant sentence, keyword, lemma, entity, and n-gram.

Our overall graph consists of 184-million nodes and 12.3-billion edges. We store this

representation of our network first in a series of Tab-Separated-Value (TSV) files, and

provide export utilities to compile this information into both MongoDB and Sqlite3

databases.

Graph Embedding. We utilize the PyTorch-BigGraph (PTBG) embedding utility

to perform a distributed embedding of the entire network [139]. This requires an ex-

pensive index operation from our distributed edge-list structure to partitioned nodes

and bucketed edges expected by PTBG. For this, we provide an efficient and optimized

C++ utility to perform this index in parallel. PTBG learns typed embeddings, and

we define node types corresponding to each presented in our semantic graph schema.

Each undirected edge in our graph schema is also coded as two directional edges of

types x→ y and y → x.

While there are many different configurations possible for PTBG, we explored a

subset to settle on a balance between computational efficiency and embedding quality.

We partition the semantic graph into 100 roughly even sized partitions per-type by

hashing each node’s id string. This partitioning results in 10,000 edge buckets, one

for each ordered pair of partitions, which easily fit in one machine’s memory. We

explore two different embedding dimensionalities: 256 and 512. When computing

both embeddings, we specify for edges to be encoded via the dot-product of nodes, and

for relationship types to be encoded using a learned translation per-type. We generate

a total of 100 negative samples per edge, 50 chosen from nodes within each batch,

and 50 chosen from nodes within the corresponding partitions. Dot products between

embeddings are learned using the supplied softmax loss, with the first dimension of

198

every embedding acting as a bias unit.

Formally, if an edge ij exists between nodes i and j of types ti and tj respec-

tively, then we learn an embedding function e(·) that is used to create a score for ij by

projecting each node into RN where N is a predetermined embedding dimensionality.

In our experiments we consider N = 256 and 512. This embedding function uses the

typed translation vector T (titj) ∈ RN that is shared for all edges of the same type as

ij. This score is defined as:

s(ij) = e(i)1 + e(j)1 + T
(titj)
1 +

N∑
k=2

e(i)k

(
e(j)k + T

(titj)
k

)
(8.4)

Then, for each edge ij, we generate 100 negative samples in the form x
(ij)
n y

(ij)
n .

Their scores are compared to that of the positive sample using the following loss

function, which indicates the component of overall loss corresponding to edge ij:

GraphLossij = −s(ij) + log
100∑
n=0

exp
(
s
(
x(ij)
n y(ij)

n

))
(8.5)

Deployment technical note: When optimizing our semantic graph embedding, we find

that maximal performance is achieved using a compute cluster of twenty twenty-four-

core machines. Within the 72h time restriction of the Palmetto super computing

cluster, we have enough time to see every edge in the graph 10 times, in the case of

the 256-dim embedding, and 5 times in the case of the 512-dim embedding. Once

complete, we are ready to begin training the AGATHA deep learning hypothesis

generation model.

Training Data. In order to learn what makes a plausible biomedical connection,

we collect the set of published connections present in our pre-2015 training set. For

this, we turn to the Semantic Medical Database (SemMedDB), which contains over

199

AGATHA-512 Parameters 1,313,280
AGATHA-512 Embeddings 10,115,707,904
AGATHA-256 Parameters 328, 960
AGATHA-256 Embeddings 5,057,853,952

Table 8.1: Model Size. Because embeddings are trained separately from the hypothe-
sis prediction model, both numbers are listed. Embedding numbers correspond to the
amount of floating-point values associated with predicate and coded-term embeddings
needed to use the model.

19-million pre-2015 SemRep [17] predicates parsed from all of MEDLINE. A SemRep

predicate is a published subject-verb-object triple that is identified algorithmically.

In lieu of a true data set of attempted hypotheses, we can train our model on these

published connections. However, this approach comes with some drawbacks. Firstly,

SemRep predicates are defined on the set of UMLS terms, which will restrict our

system to only those entities that have been coded. This limitation is acceptable

given size size of UMLS, and presence of existing benchmarks defined among UMLS

terms [226]. Secondly, the predicate set is noisy, and may contain entries that are

incorrect or obsolete, as well as algorithmically introduced inaccuracies. However, we

find at scale that these sources of noise do not overwhelm the useful signal present

within SemMedDB.

8.4 Ranking Plausible Connections

We train a model to rank published SemRep [17] predicates above noisy neg-

ative samples using the transformer architecture [236]. To do so we first formulate

a predicate with subject α and object β for input into the model. Those predicates

that are collected from SemRep are “positive samples” (PS). The function Γ(·) indi-

cates the set of neighbor predicates that include a term as either a subject or object.

We represent the αβ predicate as a set with elements that include both terms, as

200

Figure 8.3: AGATHA ranking transformer encoder. Given entity-pair and neigh-
borhoods, looks up graph embeddings and produce ranking criteria.

well as a fixed-size sample with-replacement of size s = 15 of each node’s non-shared

predicates:

PSαβ =
{
α, β, γ

(α)
1 , . . . , γ(α)

s , γ
(β)
1 , . . . , γ(β)

s

}
where γ

(α)
i ∼ {Γ(α)− Γ(β)}, and γ

(β)
i ∼ {Γ(β)− Γ(α)}

(8.6)

Negative Samples We cannot learn to rank positive training examples in isolation.

Instead, we first generate negative samples to accompany each published predicate.

This include two types of samples: scrambles and swaps. Both are necessary, as we

find during training that the easier-to-distinguish scrambles aid early convergence,

while the swaps require the model to understand the biomedical concepts encoded by

the semantic graph embedding.

The negative scramble (NScr) selects two arbitrary terms x and y, as well as

2s arbitrary predicates from the set of training data. While we enforce that x and

y do not share a predicate, we do not enforce any relationship between the sampled

predicates and these terms. Therefore these samples are easy to distinguish from

201

positive examples. If T denote all positive-set terms, and P denotes all predicates,

then a negative scramble associated with positive sample αβ is notated as:

NScrαβ = {x, y, γ1, . . . , γ2s}

where x, y ∼ T , and γi ∼ P

s.t. Γ(x) ∩ Γ(y) = ∅

(8.7)

The negative swap (NSwp) selects two arbitrary terms, but samples the asso-

ciated predicates in the same manner as the positive sample. Therefore, the observed

term-predicate relationship will be the same for each half of this negative sample

(α and γ
(α)
i). This sample requires the model to learn that some αβ pairs should

not go together, and this will require an understanding of the relationships between

biomedical terms. A negative scramble associated with αβ is notated as:

NSwpαβ =
{
x, y, γ

(x)
1 , . . . , γ(x)

s , γ
(y)
1 , . . . , γ(y)

s

}
where γ

(x)
i ∼ {Γ(x)− Γ(y)}, , and γ

(y)
i ∼ {Γ(y)− Γ(x)}

s.t. Γ(x) ∩ Γ(y) = ∅

(8.8)

Objective. We minimize the margin ranking loss between each positive sample and

all associated negative samples. The contribution of positive sample αβ to the overall

loss is defined as:

L(α, β) =
n∑
i=0

L
(

PSαβ,Nscr
(i)
αβ

)
+

n′∑
j=0

L
(

PSαβ,Nswp
(j)
αβ

)
where L(p, n) = max (0,m−H(p) +H(n))

(8.9)

Here n = 10 denotes the number of negative scrambles, n′ = 30 is the number

of negative swaps, m = 0.1 is the desired margin between positive and negative

202

samples, and H is the learned function that produces a ranking criteria given two

terms and a sample of predicates.

Model. Using the transformer encoder summarized in Section 8.2, as well as the

semantic graph embedding, we construct our model. If e(x) represents the semantic

graph embedding of x, FF represents a feed-forward layer, and E represents an encoder

layer, then our model H is defined as:

H(X) = sigmoid(MW)

M =
1

|X|
∑
xi∈X

EN(FF (e(xi)))

Ei+1(x) = E(Ei(x)), and E0(x) = x

(8.10)

Here N = 4 represents the number of encoder layers, and W indicates the

learned weights associated with the final ranking projection. By averaging the trans-

former output over the input sequence X, then projecting that result down to a single

real value with W , and applying the sigmoid function, we produce an output per-

predicate in the unit interval. This function is depicted in Figure 8.4. Deployment

technical note: We minimize the ranking loss over all published predicates using the

LAMB optimizer [257]. This allows us to efficiently train using very large batch sizes,

which is necessary as we leverage 10 NVIDIA V100 GPUs to effectively process 600

positive samples (and therefore 2,400 total samples) per batch. In terms of hyperpa-

rameters, we select a learning rate of η = 0.01 with a linear warm up of 1,000 batches,

a margin of m = 0.1, a neighborhood sub-sampling rate of s = 15, and we perform

cross-validation on a 1% random holdout to provide early stopping and to select the

best model with respect to validation loss. Due to the large size of training data, one

epoch consists of only 10% of the overall training data. This process is made easier

through the helpful Pytorch-Lightning library [73].

203

8.5 Validation

Testing hypothesis generation, in contrast to information retrieval, is difficult

as ultimately these systems are intended to discover information that is unknown to

even those designing them [253]. A thorough evaluation would require a costly process

wherein scientists explore automatically posed hypotheses. Instead, we perform a his-

torical validation, in a manner similar to that performed in [226, 226]. This method

enables large-scale evaluation of many biomedical subdomains almost instantly, but

cannot truly tell us how our system will perform in a laboratory environment. To

attempt to incorporate some expert oversight into the validation process, we supple-

ment automatic validation with qualitative analysis from a domains scientist, which

follows the older validation process found in [225]. After ensuring the system is capa-

ble of uncovering recent connections from historical data, we begin the much longer

process of testing contemporary ideas system in real-world scenarios, as was pursued

by Moliere [10], Watson [18], and ARROWSMITH [219].

Comparison with Heuristic-Based Ranking. We begin by comparing the per-

formance numbers obtained through our proposed learned ranking criteria with other

ranking methods posed in [226]. Specifically, the Moliere system presents experimen-

tal numbers for various training-data scenarios for the same 2015 temporal holdout

as used in this work [226]. For a direct comparison, we use our proposed method to

rank the same set of positive and negative validation examples.

Comparison by Subdomain Recommendation. As mentioned in [96], the Moliere

validation set has limitations. We improve this set by expanding both the quantity

and diversity of considered term pairs, as well as evaluating AGATHA through the

use of all-pairs recommendation queries within popular biomedical subdomains. As a

result, this comparison effectively uses subdomain-specific negative examples, which

204

makes for a harder benchmark than that presented in the Moliere work. It is worth

nothing that these all-pairs searches are made possible by the very efficient neural-

network inference within AGATHA, and would not be as computationally efficient in

the Moliere shortest-path and topic-modeling approach.

This analysis begins by extracting semantic types [5], which categorize each

UMLS term per-predicate into one of 134 categories, including “Lipid,” ”Plant,”

or “Enzyme.” From there, we can group αβ predicate-term pairs by types tα and

tβ. We select the twenty predicate type pairs with the most popularity in the post-

2015 dataset, and within each type we identify the top-100 predicates with the most

rapid non-decreasing growth of popularity determined by the number of abstracts

containing each term-pair per year. These predicates form the positive class of the

validation set. We form the rest of the subdomain’s validation set by recording all

possible undiscovered pairs of type tαtβ from among the UMLS terms in the top-

100 predicates. We then rank the resulting set by the learned ranking criteria, and

evaluate these results using a range of metrics.

Metrics. The first metrics we consider are typical for determining a classification

threshold: the area under the receiver-operating-characteristic curve (AUC ROC) and

the area under the precision-recall curve (AUC PR). An AUC ROC of 0.5 indicates

that the ranking criteria randomly orders the published term pairs relative to the

undiscovered, while an area of 1 indicates that all published term pairs occur first

in the ranking. Similarly, the PR curve determines how varying levels of precision

could be achieved while still retrieving a certain amount of published connections. An

AUC PR closer to 1 again indicates that all published term pairs occur at the start

of the list, and a PR closer to 0 indicates that they occur towards the end. However

unpublished predicates occurring to the start of the list typically have a larger negative

impact in the score. We additionally provide recommendation system metrics, such as

205

top-k precision (P.@k), average precision (AP.@k), and overall reciprocal rank (RR).

Top-k precision is simply the number of published term-pairs appearing in the first

k elements of the ranked list, divided by k. Top-k average precision weights each

published result by its location in the front of the ranked list. The reciprocal rank is

the inverse of the rank of the first published term pair.

The above recommender system metrics all consider the single many-to-many

query within a biomedical subdomain. However, this same result can be interpreted

as a set of one-to-many recommendation queries. Doing so enables us to compute

the mean average precision(MAP.@k), and mean-reciprocal rank(MRR.@k) for the

set of recommendations. A high MRR within a domain indicates that the researcher

should expect to see a useful result within the first few results. A high MAP indicates

that out of the top k results, more of them are useful. These metrics, taken together,

should influence biomedical researchers when exploring the results of a one-to-many

query.

While all of the above metrics quantify the performance of the AGATHA

learned ranking criteria, it is also important to provide interpretable results to biomed-

ical researchers. For this reason we also perform Moliere-style shortest-path and

topic-model queries on the AGATHA semantic graph. Our newly optimized frame-

work enables us to perform one query on a single thread in a few minutes, which

can allow a medical researcher to explore a subset of recommendations output by the

deep learning model. We visualize these topic model outputs and provide them to

domain scientists in order to give feedback on their predictive power for recent find-

ings. One such finding, the relationship between HIV-associated Neurodegenerative

Disease, which was found by Moliere in 2019 [10], is among this qualitative study.

206

8.6 Results

We compare the performance of AGATHA against Moliere, as presented in [226].

In that work, multiple trained instances of Moliere rank a benchmark set of pos-

itive and negative potential connections using a range of criteria defined in [226].

These Moliere instances each use different datasets published prior to 2015 in order

to perform hypothesis queries, of which we focus on two: all of MEDLINE (Moliere:

MEDLINE), and all of PubMedCentral (Moliere: Full Text). The former instance

represents a system trained on the same raw data as the AGATHA system presented

here, while the latter represents a system trained on all publicly available full-text

papers provided by the NLM released in the same date range.

The prior work establishes that the Moliere topic-modeling approach is im-

proved by the additional information made available by full-text papers, but at a

overwhelming 45x runtime penalty. These quality results are reproduced in Table 8.3,

and we include additional results for the AGATHA system when evaluated on only

abstracts, and exactly the same set of predicates. We observe that the AGATHA sys-

tem, when trained with 512-dimensional graph embeddings, improves upon Moliere:

Medline by 25% and Moliere: Full Text by 13%. Importantly, this increase in quality

comes at an overwhelming decrease in runtime, with the wall time per-query dropping

from minutes to milliseconds, due to the introduction of the deep-learning approach.

Figures 8.4(a) and 8.4(b) depict ROC and PR curves for the top-performing

AGATHA model.

To further study the performance differences between the Moliere and AGATHA

systems, we quantify the correlations between their different ranking criteria. We de-

pict these correlations with Moliere: Medline and Moliere: Full Text in Figures 8.5(a)

207

T
ra

in
in

g
A

U
C

P
.@

A
P

.@
M

A
P

.@
M

R
R

.@
T

y
p

e
%

R
an

k
P

R
R

O
C

R
R

10
10

0
10

10
0

10
10

0
10

10
0

gn
gm

,
ce

lf
0.

29
74

0.
44

0.
62

1.
00

0.
50

0.
47

0.
83

0.
54

0.
57

0.
56

0.
61

0.
61

gn
gm

,
n
eo

p
0.

35
61

0.
34

0.
65

0.
50

0.
50

0.
43

0.
54

0.
47

0.
46

0.
41

0.
52

0.
52

aa
p
p
,

n
eo

p
0.

35
62

0.
20

0.
62

0.
33

0.
30

0.
26

0.
34

0.
28

0.
40

0.
35

0.
46

0.
47

gn
gm

,
ce

ll
0.

43
42

0.
19

0.
72

0.
25

0.
30

0.
17

0.
27

0.
21

0.
35

0.
32

0.
38

0.
38

aa
p
p
,

ce
ll

0.
67

26
0.

19
0.

63
0.

50
0.

20
0.

17
0.

36
0.

21
0.

34
0.

33
0.

37
0.

38
aa

p
p
,

gn
gm

1.
05

13
0.

17
0.

68
1.

00
0.

50
0.

22
0.

61
0.

31
0.

36
0.

27
0.

39
0.

40
ce

ll
,

aa
p
p

1.
59

4
0.

17
0.

67
0.

14
0.

10
0.

19
0.

14
0.

18
0.

35
0.

32
0.

40
0.

41
gn

gm
,

gn
gm

0.
50

37
0.

17
0.

66
1.

00
0.

40
0.

20
0.

77
0.

37
0.

31
0.

26
0.

33
0.

34
or

ch
,

gn
gm

0.
41

49
0.

16
0.

69
0.

05
0.

00
0.

22
0.

00
0.

21
0.

33
0.

27
0.

34
0.

36
aa

p
p
,

d
sy

n
0.

67
25

0.
15

0.
69

0.
33

0.
20

0.
24

0.
28

0.
22

0.
34

0.
27

0.
37

0.
38

gn
gm

,
d
sy

n
0.

21
97

0.
15

0.
71

0.
50

0.
40

0.
24

0.
59

0.
32

0.
29

0.
23

0.
30

0.
31

b
p

o
c,

aa
p
p

1.
06

12
0.

14
0.

67
1.

00
0.

20
0.

18
0.

70
0.

28
0.

35
0.

30
0.

38
0.

39
b
ac

s,
gn

gm
0.

29
73

0.
12

0.
67

0.
33

0.
10

0.
14

0.
33

0.
19

0.
26

0.
24

0.
29

0.
30

b
ac

s,
aa

p
p

0.
73

22
0.

12
0.

68
0.

17
0.

30
0.

14
0.

28
0.

18
0.

27
0.

24
0.

30
0.

32
d
sy

n
,

h
u
m

n
7.

02
1

0.
11

0.
64

0.
05

0.
00

0.
10

0.
00

0.
10

0.
27

0.
25

0.
29

0.
31

aa
p
p
,

aa
p
p

1.
57

5
0.

11
0.

69
1.

00
0.

20
0.

11
0.

67
0.

25
0.

28
0.

24
0.

32
0.

33
gn

gm
,

aa
p
p

0.
40

52
0.

11
0.

71
1.

00
0.

20
0.

11
0.

61
0.

22
0.

23
0.

21
0.

25
0.

26
p
h
su

,
d
sy

n
0.

76
20

0.
10

0.
61

0.
04

0.
00

0.
14

0.
00

0.
11

0.
27

0.
20

0.
30

0.
31

d
sy

n
,

d
sy

n
1.

35
6

0.
09

0.
62

0.
17

0.
20

0.
12

0.
19

0.
15

0.
22

0.
18

0.
25

0.
27

to
p
p
,

d
sy

n
1.

19
9

0.
09

0.
64

0.
10

0.
10

0.
17

0.
10

0.
12

0.
28

0.
22

0.
30

0.
31

T
ab

le
8.

2:
A

G
A

T
H

A
-5

12
.

A
b

ov
e

ar
e

h
y
p

ot
h
es

is
p
re

d
ic

ti
on

re
su

lt
s

on
b
io

m
ed

ic
al

su
b
-d

om
ai

n
s.

In
d
ic

at
ed

al
on

g
w

it
h

p
er

fo
rm

an
ce

n
u
m

b
er

s
ar

e
th

e
p

er
ce

n
ta

ge
of

tr
ai

n
in

g
d
at

a
(p

re
-2

01
5

p
re

d
at

es
)

as
w

el
l

as
th

e
tr

ai
n
in

g-
d
at

a
p

op
u
la

ri
ty

ra
n
k

ou
t

of
63

96
,

w
it

h
1

b
ei

n
g

m
os

t
p

op
u
la

r.
M

et
ri

cs
d
es

cr
ib

ed
in

d
et

ai
l

in
S
ec

ti
on

8.
5.

208

System Instance ROC AUC PR AUC

Moliere: Medline 0.718 0.820
Moliere: Full Text 0.795 0.778
AGATHA-256 0.826 0.895
AGATHA-512 0.901 0.936

Table 8.3: Benchmark comparison between Moliere and AGATHA on the same
benchmark.

(a) Receiver-Operating Characteristic (b) Precision-Recall

Figure 8.4: Validation Benchmark 2015

209

(a) AGATHA vs. Moliere (100% Medline) (b) AGATHA vs. Moliere (PMC Full text)

Figure 8.5: Correlations between Moliere and AGATHA-512 scores on the 2015
benchmark. Green and red dots indicate positive and negative hypotheses.

and 8.5(b) respectively. Each point in these scatter plots indicate a hypothesis, which

is colored green if it was published following 2015, and red if it was negatively sam-

pled. The scale for both scatter plots is determined by the intervals spanned by each

system’s ranking criteria. We observe that there is very little correlation between

these scores, and that the separation between positive and negative samples is clearly

seen in the AGATHA ranking, and muddied in the Moliere rankings. As a result, we

do not believe there would be a substantial benefit in creating an ensemble method

to combine the deep-learning and classical ranking methods.

To extend the validation beyond the above results, provided that we can now

generate thousands of hypothesis per-minute, we explore the capacity of our deep-

learning ranking criteria to perform hypothesis recommendation within various many-

to-many queries across different biomedical sub-domains. These results, displayed in

Table 8.2, list the 20 predicate types with the most popularity following 2015. Due

to space limitations, we present predicate types using NLM semantic type codes [5].

All numbers are reported from the AGATHA-512 model.

We observe that the (Gene)→(Cell Function)(gngm, celf) predicate type, is the

210

easiest predicate type for AGATHA-512 to recommend, even though connections of

this type only account for 0.29% of the training data. Of the top-10 recommendations

the highest ranked is a valid connection and half are valuable. When performing a one-

to-many query within this type of connection, we observe 85% of all top-10 suggestions

to be useful on average, and that a useful result occurs typically within the first two

recommendations. We see similar performance in the (Gene)→(Neoplastic Process)

(gngm, neop) and (Amino Acid, Peptide, or Protein)→(Neoplastic Process) (aapp,

neop) sub-domains. Interestingly, there appears to be little correlation between the

popularity of a predicate type in the training data and the quality of the resulting

recommendations. This result enforces the idea of AGATHA as a general-purpose

biomedical hypothesis generation system.

Of the 20-most-popular predicate subdomains considered, AGATHA-512 has

the most difficulty with the (Therapeutic or Preventive Procedure)→(Disease or Syn-

drome)(topp, dsyn). In this subdomain, the the highest ranked positive predicate is

ranked tenth, and only twelve of the top-100 suggestions are useful. Still, in a one-

to-many query, we expect about one-in-ten recommended predicates to be useful,

and for the top-3 predicates to contain a useful result. While the lower-performing

subdomains are significantly harder for AGATHA-512 than the top few, we note that

even a low-precision tool can be useful for aiding the biomedical discovery process.

Furthermore, these difficult subdomains are still ranked significantly better than ran-

dom chance, and even better than many of the classical ranking measures presented

in [226]. Using this information, future work may wish to fine-tune the AGATHA

method to a specific subdomain for improved performance.

211

8.7 Lessons Learned and Open Problems

Result Interpretability. While deep-learning models are notoriously hard

for human decision makers to interpret, we find that biomedical researchers still need

to understand how a result was produced in order to act on model predictions. How-

ever, we cannot leave the entire analysis up for human judgement, as this drastically

reduces the benefits of “automatic” hypothesis generation. To walk the narrow edge

between these conflicting objectives, we implement both an automatic ranking com-

ponent, as well as a more interpretable topic-model query system. We find that these

tools serve different functions during different times of the discovery process.

At first, a researcher may be considering a wide range of potential research

directions, such as during the candidate selection phase of the drug-discovery process.

This often requires assembling hundreds (or thousands) of target ingredients, com-

pounds, genes, or deceases, and determining whether elements of this large set have a

relationship to an item of interest. For instance, when we evaluated HIV-associated

Neurodegenerative Disease, we explored over 40,000 potential human genes [10]. This

component of the discovery process fits nicely into the deep-learning ranking and rec-

ommendation system proposed here, especially when the target set is so large that a

manual literature review may prove costly.

Once a candidate set of targets has been winnowed from the large target set,

the researcher will prioritize interpretability. However, the candidate set is typically

orders of magnitude smaller than the target set. Therefore, we can afford to run

more costly-yet-interpretable routines, even if these routines do not provide any form

of “automatic” analysis. At this stage, we switch from our deep-learning ranking

method to the topic-modeling approach similar to that presented in Moliere [225].

This process finds a path within our semantic network containing the textual infor-

212

mation necessary to describe a potential connection. We present that path along with

the set of relevant sentences, as well as a visualization of the topic model built from

those sentences. Researchers can explore the sets of entities that are frequently men-

tioned together in order to expand their mental models of each hypothesis’s quality.

Datasets and Expandability. When discussing hypothesis generation sys-

tems with prospective adopters in the biomedical community, we often are asked to

include specific datasets that has domain-relevance to an individual’s research di-

rection. For instance, the set of clinical trials, internal experimental findings, or a

database of chemicals.

Currently, new network-based datasets can be introduced trivially. After pro-

cessing Medline, the network lives as a collection of simple TSV files. This set can

receive new datasets, provided that the new entity types are included in the follow-

ing PyTorch-BigGraph configuration. We use this graph-addition technique to merge

SemRep predicate data into the Medline dataset.

New textual datasets can similarly be introduced earlier in the process. Text

records, once formulated into python dictionaries with a particular set of fields, may

be added to the pipeline, participate in the tokenization and network-construction

process, and will eventually be included in topic-model queries. however, this process

requires a minor modification to the existing data pipeline code. We are working

currently to make this import operation as simply as the network-addition process

described above.

In contrast to the graph and text sources, it is not currently clear how to

incorporate experimental data into the AGATHA system. This challenge arises from

the many forms experimental data can take. In the case where an experiment can

be reformulated as a network, such as converting the gene-expression matrix into a

gene-to-gene network, these results can trivially be introduced as new edges. Other

213

experimental results, such as many clinical trials, include a thorough summary of that

trial’s findings. These may be introduced as a combination of textual and graph-based

sources, including both the description text, as well as any links to known publications

that reference the trial. Importantly, we do not find a “one size fits all” solution for

experimental data, and more work should explore the costs and benefit associated

with various datasets.

8.8 Related Work

Foster et al. [78] identify a series of common successful research strategies of-

ten used by scientists. In doing so they demonstrate that high-risk and innovative

strategies are uncommon among the scientific community in general. It follows that

the field of hypotheses generation obeys similar rules. Many systems have found suc-

cess using algorithmic techniques that approximate these common research strategies

by studying term co-occurrences [108, 102, 245], or predicting links with a graph

of biomedical entities [171, 71]. While the Foster’s model of research strategies has

proven to be useful, the mechanisms involved in complex scientific discoveries remain

unexplored.

Unsurprisingly, we find that hypothesis generation systems utilize algorithmic

techniques in a range of complexity that is analogous to these human research strate-

gies. The first hypothesis generation system, ARROWSMITH, presents the ABC

model of automatic discovery [219]. This technique identifies a list of terms that are

anticipated to help explain a connection between two terms of interest. This basic

algorithm remains in some modern systems, such as [121]. However, ABC-based tech-

niques have significant limitations [201], including their similarity metrics defined on

heuristically determined term lists, as well as their reliance on manual validation pro-

214

cesses. As a result, ABC systems are know to be biased towards finding incremental

discoveries [124].

A completely different strategy of performing LBD is proposed by Spangler

et al. in [209]. To explore the p53 kinase, the authors use neighborhood graphs

constructed from entity co-occurrence rates. The approach relies on domain experts

and requires manual oversight to provide MEDLINE search queries, and to prune

redundant terms, but produces promising results. In [52] the authors demonstrate

that this technique can identify kinase NEK2 as an inhibitor of p53, and in [18] a

similar scientist-in-the-loop technique identifies a number of RNA-binding proteins

associated with ALS.

A significant step beyond ABC and human-assisted techniques is to incorpo-

rate a domain specific datasets. Bipartite graphs, such as the gene-disease [145] or

the term-document [81] networks, are frequent choices. These systems usually aim to

perform a number of graph traversals between node-pairs in order to rank the most

viable options. However, the number of generated paths may be prohibitively large,

which reduces ranking quality [82] To address this problem, Gopalakrishnan proposes

two-stage filtering through a ”single-class classifier” which is able to prune up to 90%

hypotheses prior to the ranking scheme [81]

One recent approach is to use deep learning models to help extract viable

biomedical hypotheses. Sang et al. [188] describe GrEDeL, a way to generate new

hypotheses using knowledge graphs obtained from predicate triples in the form of

“subject, verb, object”. This approach finds all possible paths between a given drug

and decease, provided those paths include a particular target entity. Then these paths

are evaluated using a LSTM model that captures features related to drug-disease

associations. While the GrEDeL system is successful at identifying some novel drug-

disease relationships, this approach has some important trade-offs: (1) Their proposed

215

model is trained using SemRep graph traversals as a sequence, which the authors note

is a highly noisy dataset. Furthermore, multiple redundant and similar paths exist

within their dataset, which decrease the quality of their validation holdout set. The

AGATHA system overcomes this limitation by leveraging node neighborhoods in place

of paths. (2) Their knowledge graph is constructed exclusively from predicates mined

from MEDLINE abstracts using SemRep. This process affects the model quality

significantly and, being the only resource of knowledge, it requires careful manual

filtering of false positive and isolated predicates. (3) The GrEDeL LSTM model is

trained to only discover drug-disease associations, and does not generalize to other

biomedical subdomains. (4) This approach embeds their predicate knowledge graph

using the TransE method [38], which supposes that relationships can be modeled

as direct linear transformations. When using the large number of relationship types

present in SemRep, this assumption greatly reduces the useful variance in the resulting

node embeddings.

8.9 Conclusions

This work presents AGATHA, a deep-learning biomedical hypothesis genera-

tion system, which can accelerate discovery by learning to detect useful new research

ideas from existing literature. This technique enables domain scientists to keep pace

with the accelerating rate of publications, and to efficiently extract implicit connec-

tions from the breadth of biomedical research. By constructing a large semantic

network, embedding that network, and then training a transformer-encoder deep-

learning model, we can learn a ranking criteria that prioritizes plausible connections.

We validate this ranking technique by constructing an instance of the AGATHA sys-

tem using only data published prior to January 1st 2015. This system then evaluates

216

both a benchmark of predicates established from prior work [226], and performs rec-

ommendation in twenty popular biomedical subdomains. The result is state-of-the

art prediction quality on the 2015 benchmark, as well as strong performance across

a range of subdomains. In the case where a simple recommendation is not sufficient,

we also implement topic-model-based interpretability queries, that enable researchers

to learn more about particular connections of interest, after the initial ranking has

limited their field of consideration. The AGATHA system is open-source and written

entirely in Python and PyTorch, which enable to be easily used or adapted anywhere.

We release both the 2015 validation system, as well as an up-to-date 2019 system to

accelerate the broader community of biomedical sciences.

217

Chapter 9

CBAG: Conditional Biomedical

Abstract Generation

Abstract

Biomedical research papers use significantly different language and jargon

when compared to typical English text, which reduces the utility of pre-trained NLP

models in this domain. Meanwhile Medline, a database of biomedical abstracts, in-

troduces nearly a million new documents per-year. Applications that could benefit

from understanding this wealth of publicly available information, such as scientific

writing assistants, chat-bots, or descriptive hypothesis generation systems, require

new domain-centered approaches. A conditional language model, one that learns the

probability of words given some a priori criteria, is a fundamental building block

in many such applications. We propose a transformer-based conditional language

model with a shallow encoder “condition” stack, and a deep “language model” stack

of multi-headed attention blocks. The condition stack encodes metadata used to al-

ter the output probability distribution of the language model stack. We sample this

218

distribution in order to generate biomedical abstracts given only a proposed title,

an intended publication year, and a set of keywords. Using typical natural language

generation metrics, we demonstrate that this proposed approach is more capable of

producing non-trivial relevant entities within the abstract body than the 1.5B param-

eter GPT-2 language model. Reproducability: All code, data, pre-trained models,

and experimental parameters are available online: sybrandt.com/2020/cbag

9.1 Introduction

The biomedical sciences are becoming more data driven due to the increased

availability of experimental data and the democratization of machine learning al-

gorithms. One subfield of biomedical data science, literature-based discovery [225],

produces algorithms to automatically identify plausible research directions from the

growing body of scientific literature [41]. While these systems have seen early suc-

cesses aiding biomedical science [10, 18], these techniques often lack the interpretabil-

ity necessary to persuade domain scientists to pursue algorithmically generated leads.

While customizable visualizations aid significantly [208], many researchers would pre-

fer a textual description to accompany generated hypotheses. Thinking much further

into the future, if hypothesis generation systems are ever going to function as auto-

mated scientists in their own right, they will require the ability to generate textual

arguments supporting their own ideas.

Today, modern deep-learning language generation models can produce text in

a range of contexts. Building off of the transformer architecture [236], models like

BERT [63] and GPT/GPT-2 [172, 173] have set a new standard in a range of natural

language benchmarks [241]. Adaptations of these models, such as SciBert [22] and

BioBert [135], have retrained the baseline models for domain-specific tasks in order

219

http://sybrandt.com/2020/cbag

to advance the state of domain-specific benchmarks as well [101, 167]. However,

these domain-specific models are not designed for natural language generation (NLG).

Models like GPT are trained to generated text in the language of typical English

writing, and we demonstrate below that these generations are ill-suited for the jargon-

filled particular language used by biomedical scientists.

Compounding these challenges around generating biomedical text, much less

work has focused on conditional generation, wherein the output language distribution

is affected by a priori knowledge. Older text captioning systems [256] follow a sim-

ilar approach using sequence models informed by image encodings. However, more

control over generated text is necessary for applications like hypothesis generation

systems, where semantic information detected by the system should be leveraged in

an automatically produced argument. Modern systems trained outside the biomedical

domain, such as Ctrl [119] allow for some conditions, but lack the flexibility needed

to capture sets of semantic information. More generalizable methods, such as those

produced by variational auto-encoders [105], can capture rich latent language seman-

tics, but cannot straightforwardly encode domain-based information, such as a set of

keywords one wishes to include in the output text.

A language model that can enable complex domain-specific applications, such

as hypothesis generation, therefore requires a new approach. This technique should

accept an arbitrary set of semantic criteria as a condition, should be aware of domain-

specific entities and jargon, and should produce text that would be expected by

biomedical scientists.

In this work we propose CBAG, a conditional biomedical abstract genera-

tion model that seeks to address the above requirements. This transformer model

includes a shallow encoder stack to encode qualities of the condition, and an deep

decoder stack to produce a high quality language model. We train this model us-

220

ing semi-supervised multi-task generative pre-training, wherein to minimize our pro-

posed objective function, the model must predict successive tokens, parts of speech,

dependency tags, as well as entity labels. We train this model using over 20-million

biomedical records provided by the National Library of Medicine (NLM) through the

Medline database. Each record consists of a title, abstract, publication year, and

an optional set of author-provided keywords. Text processing and annotations are

provided by a biomedical NLP model trained on the “BIONLP13CG” BioCreative

training set [101]. This pre-trained domain-specific model allows the CBAG model

to apply the knowledge gain from the relatively small human-annotated dataset to

the larger set of unstructured text present in Medline.

We train the proposed model by sampling textual windows from within MED-

LINE abstracts. The publication date, and any author-supplied Medical Subject

Headings (MeSH terms, a set of biomedical keywords and phrases) form the condi-

tion. The sampled window serves as input to the decoder stack. Windows are split

into subword units using the unigram subword-regularization algorithm [127]. Using

masked-self attention, we train the model to predict each subword i + 1 using only

the condition and tokens 1, . . . , i.

To the best of our knowledge, this work is the first attempt to design a biomed-

ical abstract generator. Therefore, without a direct point of comparison, we leverage

the 1.5-billion parameter “huge” version of GPT-2 to compare against. As this lan-

guage model was trained on a range of online data sources, such as the BooksCorpus

and English Wikipedia, it is a disadvantage in our domain-specific task. However,

the authors find that this model is capable of a range of specific tasks across domains,

such as language translation, question answering, and commonsense reasoning [173].

Furthermore, other work has even found that the GPT-2 language model can function

as a general purpose knowledge base [169]. For these reasons, we can expect GPT-2

221

to be a relevant, albeit disadvantaged, point of comparison.

When generating an abstract during evaluation, we formulate a human writ-

ten title, as well as relevant condition information where applicable, for model input.

We then sample each model’s subword probability distribution for each generated

result until the new abstract is written. We evaluate computer-generated abstracts

based on their ability to produce relevant n-grams that occur in the human-written

abstract associated with the input title. We leverage a range of NLG metrics [194],

such as Bleu, METEOR, ROUGE-L and CIDEr, including a version of CIDEr that

omits input n-grams from consideration. Through all considered metrics we quantita-

tively demonstrate increased performance through the use of CBAG. Qualitatively,

we present full-abstracts, as well as a handful of sentences for assorted generations,

which show the ability of our proposed model to capture the overarching flow of sci-

entific summaries. We additionally demonstrate the ability for condition keywords

to influence model generations by producing a varied set of completions for the seed-

phrase, “In this study, we found...”

Our contribution: We present CBAG, a transformer-based language model for con-

ditional biomedical abstract generation. Trained using Medline records and informed

by semi-supervised domain-specific annotations, this model captures biomedical jar-

gon, entities, and pattern of scientific discussion. We compare generated abstracts

against the 1.5B parameter GPT-2 language model, and demonstrate a superior abil-

ity to produce relevant n-grams across a range of NLG metrics.

All code, data, pre-trained models, preprocessing pipelines, and experimental

parameters are available online1. We additionally supply a set of over 13,000 automat-

ically generated abstracts for a wide range of test-set titles. Using the generalizable

precondition approach presented here, we hope to enable future applications, such as

1sybrandt.com/2020/cbag

222

http://sybrandt.com/2020/cbag

descriptive hypothesis generation. However, we are also cognisant of the potential for

abuse surrounding high quality domain-specific language models. We discuss these

concerns further in Section 9.7.

9.2 Background

While recent language models receive a newfound popularity in proportion

to their surprising capacity across a range of tasks [173], their study predates modern

machine learning techniques [23]. Formally, a language model is a probabilistic model

that captures the conditional probability of each next element in a sequence given all

prior elements. Specifically, this is described by the function:

Pr(s) =
n∏
i=1

Pr(si|s1, . . . , si−1) (9.1)

Here, s is a sequence of n elements. The probability of observing sequence s

is determined by the product of the conditional probabilities of observing each token

si given all prior tokens. These models can generate new text by iteratively sampling

new elements from the probability distribution Pr(si+1|s1, . . . , si).

The conditional language model introduces a new term c into the above equa-

tion. The condition can allow applications to alter the resulting sequence based on a

priori knowledge [105]. Formally, the conditional language model is defined as:

Pr(s|c) =
n∏
i=1

Pr(si|s1, . . . , si−1, c) (9.2)

Modern neural network language models [173, 119], model these probability

distributions by minimizing the negative log-likelihood of these distributions over a

223

large training set of sequences:

L
((
s(1), c(1)

)
, . . . ,

(
s(m), c(m)

))
= −

m∑
j=1

n∑
i=1

logPrθ
(
s

(j)
i |s

(j)
1 , . . . , s

(j)
i−1, c

(j)
) (9.3)

Here, Prθ indicates the parameterized model that approximates the language

model distribution. Modern systems often use the transformer architecture [173, 119,

240] for state-of-the-art quality estimating Prθ.

The transformer [236], a sequence-to-sequence model built through multi-headed

attention layers, has been customized for a number of NLP tasks, as best demon-

strated by BERT [63], GPT-2 [173], and a range of notable follow-ups [174, 216, 147].

Conceptually, the attention mechanism works by learning multiple weighted averages

per-element of the input sequence. Specifically, this includes three projections of each

element’s embedding, represented as packed matrices: Q, K, and V . Each projection

functions differently, with Q acting as a “query” that is compared against “keys” K

and “values” V . The specific mechanism is defined as follows, with dk representing

the dimensionality of each Q and K embedding:

Attention(Q,K, V) = softmax

(
QKᵀ

√
dk

)
V (9.4)

The “multi-headed” aspect of the transformer indicates that the self-attention

mechanism is applied multiple times per-layer, per-element of the sequence. These

multiple heads are then recombined through a feed-forward layer:

MultiHead(X, Y) = [h1; . . . ;hk]W
(4)

where hi = Attention
(
XW

(1)
i , Y W

(2)
i , Y W

(3)
i

) (9.5)

224

The transformer model presented by Vaswani et al. [236] use the attention

attention mechanism in three different ways. Within the encoder stack, which pro-

cesses the input sequence in their proposed sequence-to-sequence model, the K, Q,

and V embeddings all come from the same sequence of tokens. This is referred to all

“self attention.” In the decoder stack, the part of the model that uses the encoder

output to generate a new sequence, these embedding matrices are masked during the

attention function such that the output embedding for position i can only depend on

prior elements. This is called “masked self attention”. Following this operation, each

decoder embedding is attended with all of the encoder embeddings. Specifically, Q

values are derived from the decoder, while K and V values depend on the encoder. We

refer to this operation as “Encoder-Decoder Attention.” Note that BERT [240] uses

only the encoder self-attention layers, while GPT-2 [173] uses the decoder’s masked

self-attention layers. The work presented here uses all three.

The multi-head components are combined with a feed-forward operation, de-

noted FF, that projects the concatenated embedding into a larger dimensionality,

applies the ReLU activation function, and then reduces back to the set embedding

rank:

FF(X) = max(0, XW)W ′ (9.6)

Then, combined with a learned layer-wise normalization, these components

combine to form encoder and decoder blocks. Omitting the standard dropout between

each operation, the encoder block is defined as:

E(X) = LayerNorm(FF(α) + α)

α = LayerNorm(MultiHead(X,X) +X)

(9.7)

225

while the decoder block is defined as:

D(X, Y) = LayerNorm(FF(α) + α)

α = LayerNorm(MultiHead(β, Y) + β)

β = LayerNorm(MultiHead(X,X) +X)

(9.8)

Tokenization chunks an input sequence of characters into input for a transformer-

based model. BERT leverages the WordPiece algorithm [252], which first learns to

identify a predetermined number of character-groups from a sample of text in order

to minimize the expected number of character groups per sentence. The fact that

practitioners can tune the number of tokens in a WordPiece tokenization of critical

for lowering the overall vocabulary words, and ultimately the size of the model. This

approach also allows the model to more easily adapt to out-of-vocabulary words, as

infrequent words can simply be constructed by assembling smaller word-chunks (often

the chunks containing a single character) [191]. While the WordPiece algorithm itself

is proprietary, SentencePiece is an official open-source implementation.

Many groups have worked to endow transformer-based language models with

domain-based information. In the field of scientific language, two major models have

been proposed: SciBERT from AllenNLP [22], and BioBERT from Korea Univer-

sity in Seoul [135]. SciBERT is trained on over one-million papers from Semantic-

Scholar.org, and constructed to completed named entity recognition, PICO Extrac-

tion, Text Classification, Relation Classification, and Dependency Parsing. For each

of these tasks, training data is provided by relatively small human annotated datasets.

Improved performance comes from initial pretraining done on the base of the model,

in the same manner as was performed for the original BERT. From there, the base

model can be used to instantiate fine-tuned version of SciBERT, each with differ-

226

ent “task-heads,” which learn to associate the fundamental semantic content of the

base SciBERT model with the particular task at hand. BioBERT performs a similar

procedure, focusing on texts available from Medline and PubMedCentral, as well as

English Wikipedia and the Books Corpus. Then, after being pretrained on all four

datasets, BioBERT fine-tunes for named entity recognition, relation extraction, and

question answering. Again, the datasets used for fine-tuning are significantly smaller

than the datasets used for the BioBERT pretraining phase. In both cases, SciBERT

and BioBERT demonstrate superior performance in their respective tasks.

9.3 Multi-Conditional Language Model

The CBAG model follows the transformer architecture [236] with a shallow

“condition” encoder, and a deep “language model” decoder. This model is depicted in

Figure 9.1. The condition is specified as a set of embeddings that enable a high degree

of control. To capture information that is particular to language within biomedical

domain, we add terms in our objective representing not only elements of the textual

sequence, but also the part-of-speech, dependency tags, and entity class labels asso-

ciated with each textual element. For each class of prediction, we minimize the sum

of negative log likelihood:

L(t, p, d, e, c) = LT (t, t, c) + LP (p, t, c) + LD(d, t, c) + LE(e, t, c) (9.9)

where t = t1, . . . , tn are the set of ground-truth textual elements, each with

associated pi ∈ p part-of-speech tags, di ∈ d dependency labels, ei ∈ e entity labels.

The term c = c1, . . . , cm indicates the set of conditions associated with t, and captures

227

Figure 9.1: Abstract Generator Model.

information such as metadata keywords and the publication year of the ground truth

elements. Each term of (9.9) follows the form of:

L[·](`, t, c) =
n∑
i=1

−p(i)
`i

+ log

(∑
j 6=i

exp
(
p

(i)
j

))

where p(i) = softmax
(
H ({t1, . . . , ti−1}, c)W[·]

) (9.10)

where the symbol [·] is replaced by T , P , D, or E for each classification objec-

tive. The sequence ` indicate the ground-truth labels associated with each element

of t with respect to the particular classification task. Additionally, H(t, c) is the pro-

posed transformer model, which accepts all text elements {t1, . . . , ti−1} and c in order

to produce an encoding for ti. This model is defined as:

H(t, c) = Dd

Di+1 = D(Di, Ee) and D0 = t+ PE

Ei+1 = E(Ei) and E0 = c

(9.11)

Here, PE references the positional encoding defined by the sinusoidal func-

228

tion presented in [236]. Each input element of t and c is first assigned an input

encoding and put through their respective stacks of encoder and decoder layers. In-

put encodings are provided by an embedding table that begins randomly initialized.

We determine textual elements through the unigram word-part tokenizer [127], and

contextual elements consist of a learned embedding per-publication year, as well as

embeddings for each Medical Subject Heading (MeSH term). These input factors are

described in father detail in Section 9.4.

Hyperparameters. We selected hyperparameters similar to the GPT-2 “medium”

model. This includes an embedding dimensionality of dk = 1, 024, k = 16 attention

heads per multi-headed attention layer, e = 2 encoder blocks, d = 16 decoder blocks, a

fully-connected size of 3,072, and an inner-block dropout rate of 0.1. We additionally

use a max sequence length of n = 128. Our set of initial embeddings contains 16,000

text tokens, 48,133 MeSH headings, and 230 year embeddings.

Optimization. We minimize L using the large-batch optimizer LAMB [257] across

40 Nvidia V100 GPUs using an effective batch size of 480. We selected a learning rate

of 0.001, with a 500-batch linear warm up. We check pointed the model each epoch

after viewing 5% of the training data (about 700,000 abstracts). Note that each time

an abstract is viewed, we select from it a different training window. We trained this

model for 72 hours using PyTorch Lightning [73] to aid in the distribution and check

pointing.

9.4 Data Preparation

In order to train the model described above, we collect training samples (t, c)

from the set of publicly available biomedical abstracts provided in the MEDLINE

database. This dataset contains publication dates, author-supplied MeSH terms,

229

(a) Typed entity recognition. (b) Dependency tags and parts of speech.

Figure 9.2: Annotations provided by ScispaCy “BIONLP13CG.”

titles, and abstracts for mote than 30-million citations. We filter for documents that

were originally published in English, as well as documents that contain at least one

non-title sentence. Documents without metadata keywords are allowed. We split the

remaining 20-million abstracts into a training and test set following a 70-30 split.

Within the domain of biomedical text mining, there are relatively few an-

notated training sources [101, 167]. To endow the CBAG model with biomedical-

domain knowledge, we annotate the entire MEDLINE training set using an NLP

model trained on a smaller annotated training set. Because we leverage patterns

mined from a small human-annotated dataset to gain broader insights across a vast

unstructured dataset, we refer to our overall approach as semi-supervised. The Scis-

paCy model [163] trained on the “BIONLP13CG” BioCreative dataset [101] provides

our biomedical NLP model. This model was selected because it produces the widest

range of entity labels when performing named entity recognition, which consist of:

cancer, organ, tissue, organism, cell, amino acid, gene or gene product, simple chem-

ical, anatomical system, immaterial anatomical entity, multi-tissue structure, devel-

oping anatomical structure, organism subdivision, and cellular component. We add

a class corresponding to “not an entity” as well.

Using the ScispaCy model and a cluster of 100 machines, we quickly iden-

tify every token, part-of-speech, dependency tag, and entity label for all 14-million

training-set MEDLINE documents. We depict examples of these automatic annota-

230

tions in Figure 9.2. However, in order to formulate these textual features for input

into the CBAG model, we also leverage the unigram subword regularization method

from Kudo et al. [127]. This method learns an efficient tokenization sentences. Each

token corresponds to a “chunk” of characters, many of which correspond to subword

components. The unigram approach adds a normalization factor wherein the specific

tokenization for each word is probabilistic determined from the set of ambiguous sub-

word sequences. These subword sequences, along with special “start of abstract” and

“end of abstract” tokens, create input t.

We train the unigram tokenization method on one-million randomly sampled

sentences from the training set, specifying a fixed-size vocabulary of 16,000 subword

tokens. We additionally lowercase the entire training corpus, and enforce that every

character within the sampled training set receive its own token. Using the resulting

model, we tokenize the entire training set, and cross reference the subwords with

the multi-task labels provided by ScispaCy. This way, each subword token ti in the

training set is associated with a part-of-speech pi, dependency tag di, and entity label

ei.

Next we index each training-set publication years and author-supplied MeSH

keywords, which form the condition c. For publication years, we simply identify the

earliest year within the training set, 1790, and add an index for each year between then

and 2020. We identify over 4-million author-supplied keywords within MEDLINE,

which is prohibitively large for our model to capture. We prune any keyword that

occurs fewer than ten times, reducing that set to a manageable 48,133. We add each

to our excising embedding index, which contains nearly 50,000 total embeddings.

When training, we select a batch of abstracts, and for each abstract we select

a window of 128 subword tokens to form t, restricted such that the first token of

each window corresponds to the first token of a sentence. In addition, we supply the

231

Figure 9.3: Abstract Generator Example Input.

condition indices c. The sequence of labels ` is formulated by shifting the subword

token window by one token, such that ti−1 is used to predict ti, pi, di, and ei. An

example of model input and output is depicted in Figure 9.3.

9.5 Results

While NLP benchmarks such as GLUE [241] and its biomedical counterpart

BLUE [167] help researchers compare performance across a range tasks, we are un-

aware of a benchmark for the generation of biomedical abstracts. In lieu of such a

dataset, we leverage our held-out test-set of Medline abstracts, and a set of traditional

NLG metrics [194]. We generate abstracts by providing a title t and condition c from a

test-set abstract. We extend t by sampling from the resulting probability distribution

over subword tokens p(i) until observing the “end of abstract” special token. The qual-

ity of the resulting abstract is quantified for each metric, Bleu [166], METEOR [131],

ROUGE-L [143], and CIDEr [237], by comparing each generated sentence against the

set of “reference” sentences comprising the corresponding human-written abstract.

232

To add context to our reported performance numbers, we also generate text

using OpenAI’s recently released 1.5-billion parameter “huge” GPT-2 model [173].

This model has been shown to excel on a number of tasks without modification,

inducing as a replacement to traditional knowledge bases [169]. However, as this

model was trained to generate language found online, such as in the BooksCorpus

and English Wikipedia, it is at a disadvantage when generating domain-specific text.

Because GPT-2 does not produce any “end of document” indicator, we generate the

same number of subword tokens as present in the human-written counterpart, and

truncate the potential partial sentence at the end of the abstract.

We present a full abstract from both CBAG and GPT-2 in Table 9.1. Note,

newline characters produced by GPT-2 are replaced with “[\n]” due to space limita-

tions. In this example, we observe that the CBAG model recovers a set of relevant

biomedical entities. Unsurprisingly, the model parrots some entities that appear in

the title, such as, “micro- and nanopatterned topographical cues,” as well as “cellu-

lar functions” in this example. However, it is also able to produce more advanced

concepts including “multiple imaging modalities,” and “multiscale substrates” that

do not appear in the title but do appear in the corresponding human-written ab-

stract (not reproduced here for space concerns, but is publicly available). The GPT-2

model does recover some biomedical entities, such as “damaged retinal pathway” and

“retinal pigment epithelium,” however these keywords are unrelated to the considered

document. Other out-of-context entities such as “artificial neural network,” “com-

puter screen,” and reference to a blog reduce the ability of a human reader to extract

any meaningful biomedical information from this text. We find that these example

abstracts help motivate the need for domain-specific language models.

Because CBAG is a conditional language model, we explore the range of re-

sponses the model can produce given different conditions. In Table 9.2 we present

233

(PMID: 28026780) Hierarchically Micro- and Nanopatterned Topographical
Cues for Modulation of Cellular Structure and Function.
CBAG
the ability to integrate multiple physiological cues and thereby mediate many cellular
functions is critical for many complex life history processes. despite recent advances in
high-throughput imaging of biomolecules and their spatiotemporal integration into dy-
namic structure and function, the precise structural organization and temporal structure
of tissue architecture remains poorly understood. here, we present an efficient system for
temporally and spatially mapping micro- and nanopatterned topographical cues in organ-
specific spatial and temporal properties using multiple imaging modalities. the micro-
/nanopatterned geometrical cues can be localized to cell membranes, cells, and proteins.
the spatial and temporal dynamics of these local signals are precisely represented by the
cross-correlation function, which forms the basis of a geometrical model that accurately
provides spatiotemporal information about the spatial location and spatial coordinate of
the labels and their functionalities. the model is also capable of correlating the properties
of neural cells within their network without affecting the spatial and temporal organiza-
tion of their spatial features, as well as those of their surrounding tissue. as an example
of this model, cell types grown as multilayers are described.
GPT-2 Huge
[\n] [\n] The first example of what happens when an artificial neural network’see’ complex
features on a computer screen is provided by the vision of people with sight loss. The most
recent results (e.g., see Krueger’s blog) suggest that a person who has a damaged retinal
pathway for visual light-scattering called LID is able to’see’ objects using low power laser
sources. The finding is unexpected because it suggests an adaptive mechanism for recover-
ing limited visual function. The finding has profound implications for understanding how
the retina and brain develop, how vision is learned, and how people can potentially regain
impaired vision with new retinal implants. [\n] The retinotopic map shows which parts
of the retina belong to what parts of the visual field (more details in the video below).
[\n] The following images are from a retinotopic map showing a person who has lost some
peripheral vision due to an injury in his optic nerve and retinal pigment epithelium. Note
that he can make out details when looking toward the left, and when looking toward the
right, details become distorted or are obscured.

Table 9.1: Full abstracts generated with respect to the same title.

234

Condition Response

D003270: Con-
traceptive
Agents

...that, during a prospective observational period, the patients were
aware of the possibility of adverse cardiac events.

D003634: DDT ...that the aromatic (g)-tse, which is often produced in fruit, is po-
tentially useful to suppress green algae as well as pesticide toxicity.

D004042: Un-
saturated Di-
etary Fats

...that vitamin e levels are associated with early childhood health
consequences.

D006046: Gold ...that the nanoparticles provide improved sensitivity to gold
nanoparticles, and they are sensitive to ag-b interaction rather than
ca-a interaction.

D005395: Fish
Oils

...that the combination of pinkland and fish oil intakes (ca-like and
ca-like) improves the antioxidant effect of yinneria (tricapsa vul)
and that can significantly decrease food intake.

Table 9.2: Differing generations of the same prompt given various MeSH precondi-
tions. We record the first sentence completing the prompt “In this study, we found...”

the first sentence produced by the model for the input “In this study, we found...”

given different conditions. The results indicate that the condition has a significant

impact in the resulting text. When conditioned with the MeSH term for contracep-

tive agents, the model discusses a patient study on cardiac side-effects. The output

conditioned on the pesticide DDT describes fruit and toxicity. The output on gold de-

scribes describes gold-nanoparticle sensitivity. These results demonstrate the ability

for the CBAG model to learn domain-specific research content provided by various

keyword preconditions.

To provide further qualitative comparison between the considered models, we

additionally provide a few first-sentences produced given various test-set titles in Ta-

ble 9.3. In these sentences, and across the test set, we observe that CBAG produces

a number of scientific cliqués. Most clearly, the model captures biomedical turns of

phrase such as “in clinical practice.” Additionally we observe that it is common for

235

(PMID: 28029317) Laparoscopy to Predict the Result of Primary Cytore-
ductive Surgery in Patients With Advanced Ovarian Cancer: A Randomized
Controlled Trial.
laparoscopic surgery is the standard treat-
ment for patients with advanced ovarian can-
cer; however, these patients do not receive a
standard palliative regimen.

J Natl Cancer Inst 2008;100:1567–1572. 24.
The focus of this review is the effect of apoE4
levels on the risk of poor surgical outcome in
patients with advanced ovarian cancer.

(PMID: 27993387) Low vitamin D does not predict statin associated muscle
symptoms but is associated with transient increases in muscle damage and
pain.
in clinical practice, patients with moderate-
to-severe hypervitaminosis d present with de-
bilitating side effects related to statin use.

ow vitamin d does not predict statin asso-
ciated muscle symptoms but is associated
with transient increases in muscle damage
and pain.

(PMID: 28012718) Skin-Resident Effector Memory CD8+CD284− T Cells Ex-
hibit a Profibrotic Phenotype in Patients with Systemic Sclerosis.
systemic sclerosis (ssc) is an inflammatory
disease characterized by the infiltration of t
cells into skin and skin surfaces. the pres-
ence of autoantibodies can lead to the devel-
opment of cutaneous t-cell hyperactivity.

J. Clin. Invest. 117 : 2748-2759; Dilating
collagen in chronic neuropathic pain. Arch.
Neurol. 63 : 983-989

(PMID: 27999935) Laparoscopic sentinel node navigation surgery for early
gastric cancer: a prospective multicenter trial.
to compare the feasibility and safety of la-
paroscopic sentinel node navigation surgery
with that of conventional in-field navigation
(oif) surgery in the treatment of early gastric
cancer (egc).

Patel S et al. (2003) Age associated factors
associated with false-positive result of prog-
nostic biomarkers in prostate and breast can-
cer.

Table 9.3: CBAG (left) compared to GPT-2 “huge” with 1.5B parameters (right).
Both systems are given the same title as a prompt. CBAG receives metadata. Results
truncated for space.

236

CBAG to produce an entity followed by an abbreviation that it will repeat through-

out the text. However, we observe that some abbreviations are not sensible from a

human perspective, such as “in-field navigation (oif).” In these cases, the incorrect

abbreviation will still be repeated by the model.

Not seen in these first-sentences is a trend for the model to follow major ab-

stract claims with a fictional p-value or sample-size. We find p-values in approximately

10% of abstracts, with a median value of 0.02, and when plotting this distribution of

generated p-values we find it matches the expected (and troubling) trend of p-values

in real-world science [93].

To provide a more rigorous and scalable analysis of CBAG generations, we

turn to a collect of NLP metrics, mentioned above. We use two version of Bleu, one

that includes only 1-grams, and one that sums Bleu scores for 1-through-4-grams.

We do not apply smoothing or any additional normalization to Bleu scores in an

effort to reduce unnecessary hyperparameters. Furthermore, we present two versions

of CIDEr. While both use a sub-sample of training-set abstracts to approximate n-

gram document frequency, we also want to determine whether the generated text can

produce uncommon n-grams that were not supplied in the title. Our “CIDER-Title”

metric sets the weight of any n-gram that appeared in the title to zero. The sentence-

wise score distribution for all metrics for a sample of test-set abstracts are depicted

in Figure 9.4, including both scores for CBAG and GPT-2 generations. Note, these

histograms are scaled such that all bars for a particular model sum to one.

We observe that about half of the sentences produced by GPT-2 contain very

little content. As seen in Table 9.3, we see many of these sentences appear to be in

the style of citations, including page numbers and titles. Therefore, sentences such as

“J Natl Cancer Inst 2008;100:1567–1572. 24.” are unlikely to recall many relevant n-

grams. Other examples, such as the full GPT-generated abstract shown above, seem

237

(a) Bleu 1 (b) Bleu 1+2+3+4 (c) METEOR

(d) ROUGE L (e) CIDEr (f) CIDEr without Title n-
grams

Figure 9.4: Score distributions per-sentence comparing GPT-2 Huge with CBAG.

238

to discuss scientific findings from the perspective of an online news outlet covering

the new research. While the CBAG generations are imperfect, they do score higher,

on average, across all considered metrics. In the case of ROUGE-L, which measures

the ability for generated sentences to recall long sub sequences of text, that many

biomedical cliqués are likely easy for CBAG to predict, such as “the study examined

the” or “we conclude that the.” Our higher METEOR scores, which indicates the

ability to recall n-grams in the same order as found in a reference sentence, are also

effected by these common sequences. However, the “CIDEr-Title” metric explicitly

decreases the weight of these common n-grams, while only considering text that

could not be identified trivially. Our improved performance in this measure, when

seen in the context of our overall improvement, demonstrates the ability for CBAG

to produce more relevant and nontrivial biomedical text than the baseline.

9.6 Related Work

BERT [63] is a transformer-based model that consists a stack of unmasked multi-

headed self-attention, which means that every output embedding depends on all input

embeddings. This all-to-all dependency is what the authors mean when describing

the model as “bidirectional,” which departs from the more traditional left-to-right,

right-to-left LSTM model.

When training BERT, input text is tokenized by the WordPiece algo-

rithm [252], and two different types of training examples are input. In the first,

some tokens are randomly replaced with a masked reserve token. The objective of

the model during the unsupervised pre-training phase is to predict the original token,

using the rest of the input. In the second, two sentences are supplied and, using

the output embedding of the “start-of-input” character, the model must determine

239

whether the second sentence followed the first in the training data.

GPT [172] and GPT-2 [173] both use a transformer-decoder stack of masked multi-

headed self-attention. The mask, in this case, enforces that the output embedding

of token i may only depend on inputs 1, . . . , i). This masking formulation, which we

adopt in this work, restricts the GPT-models to function as pure language models.

These models are pre-trained through a generative objective. For each input sequence

1, · · · , n, the model is input 1, · · · , (n − 1) and required to generate the sequence

2, · · · , n. Due to the masked-self-attention layers, this means that each prefix sequence

of the input is simultaneously predicted each follow-up word.

The major difference between the GPT and GPT-2 models is the larger train-

ing corpus, which leads to state-of-the-art text generation. In [173], this model is even

shown to improve the state-of-the-art of other objectives such as question answering

and translation, even without a fine-tuning phase. Follow-up work [169] identifies that

high-performance language models like GPT-2 can even replace specialty knowledge-

bases.

SciBert [22] achieves state-of-the-art performance across a range of scientific NLP

benchmarks by retraining the WordPeice tokenizer [252], and a BERT model [63] on

1.14-million papers collected by semantic scholar. Beltagy et al. demonstrate that

by performing unsupervised pre-training on this scientific dataset, they are able to

improve performance over the standard BERT-pre-trained weights on their ultimate

fine-tuned models for entity recognition, PICO extraction, text classification, relation

classification, and dependency parsing. These finding make the case that scientific

text is sufficiently dissimilar from that found in general language to require custom

models.

BioBert [135] follows the same pattern as SciBert, but pre-trains on the biomedi-

cal texts supplied by MEDLINE and PubMedCentral. As opposed to SciBert, this

240

method does not replace the general-language training data supplied by English

Wikipedia and BooksCorpus, and instead appends both biomedical text databases.

Lee et al. explore the resulting fine-tuned performance across a large range of small

biomedical NLP tasks, and find mixed results. We interpret these results to indicate

the importance of finding training data that is not only sufficiently large, but also

relevant to the task at hand.

Wang et al. [240] explore the capacity for a BERT model to effectively function as a

Markov random field language model. This technique takes advantage of the masked

pre-training used in the base BERT model to predict unknown tokens. This approach

also departs from the traditional language model described here as every sequence

element determines the probability of every other element. Generation is performed

by iterative freezing highest-probability elements from within a fixed-length sequence

of initially free variables.

Ctrl [119] is a conditional language generation method that extends GPT by including

“control codes” that prefix the sequence of text elements. For instance, each website

represented in the training data is represented by a code, and as a result generated

text can switch styles based on these prefixes. Additionally, various model functions,

such as question answering, are learned via generation with various codes. As a result,

prefixing questions with the respective code results in a higher probability assigned

to relevant answers. Furthermore, this work includes some multi-code prefixes, such

as “Rating 5.0” or “Sentence Title” to further condition the generated result. While

the CTRL model is the most similar to the method presented here, it has some key

differences. Firstly, the CTRL model uses prefix tokens to condition generated text,

while we apply a shallow transformer-encoder stack. As a result, the CTRL approach

is limited in that training requires a strict set of codes, or a small set of enumerable

code-pairs. In contrast, the CBAG approach allows the method proposed here to

241

accept arbitrary-length sequences of keywords as a condition.

9.7 Future Challenges and Ethical Considerations

Many readers have likely heard of “hoax” paper generators similar to Sci-

gen [214]. This particular project generates computer science full-text articles by

randomly sampling from a context-free grammar, and has produced publications ac-

tually accepted by some venues. This 15-year-old system, however, is incapable of

fooling but the least-observant of gate keepers. However, high quality text genera-

tion introduces NLP to a range of challenges currently posed by “deepfake” images.

These problematic pictures permeate the zeitgeist and stir a response reaching further

than computer science [65], extending into law [32], culture [13], and philosophy [76].

Meanwhile, misinformation spread by human actors online already cascades through-

out social network echo chambers at an alarming rate [59]. One needs very little

imagination to conceive of ways that the automatic generation of “pseudo-science”

online could lead to public distrust of the scientific community.

OpenAI is forming partnerships between computer-science and the social sci-

ences in order to understand these implications in society [137]. One major challenge

they note is a distinct lack of “correctness” measures for text generation. In complet-

ing this work, we find that some correctness measures do exist, such as the SPICE

metric to judge image caption correctness [14]. Unfortunately, this technique does

not scale well to large knowledge bases as it requires the graph of predicate arguments

induced by reference sentences. Not only are there a lack of methods to extract argu-

ments from text, but we need to find new algorithms for quantifying correctness for

large graphs induced by all of biomedical science.

Despite the potential for abuse, we designed CBAG with our own vision to-

242

ward enabling human-understandable hypothesis generation systems. For instance,

our model architecture could be conditioned on more generalized forms of existing

biomedical knowledge, such as semantic graph embeddings, in order to produce tex-

tual descriptions of plausible future research directions. These explanations could

potentially persuade domain scientists to pursue new research directions, as simi-

lar systems have already done [10, 18]. However, these systems require specialized

analysis and introduce new cognitive burdens for scientists to understand and act

on their outputs. If similar hypothesis generation systems instead could produce

human-readable arguments, then we could better utilize the wealth of publicly avail-

able information, improve the productivity of biomedical researchers, and ultimately

find new treatments and cures for people worldwide.

9.8 Conclusions

We present the Conditioned Biomedical Abstract Generation (CBAG) model

for understanding scientific abstracts. We train this model using publicly available

biomedical data provide through MEDLINE to predict text that is conditioned on

publication year and arbitrary sets of author-supplied keywords. This model leverages

the transformer architecture [236], featuring a shallow condition encoder, as well as

a deep language model decoder. Using CBAG, and a range of natural language gen-

eration metrics [194], we demonstrate the need for such a domain-specialized model,

as opposed to a larger more general model like GPT-2.

We anticipate that conditioned language generation can be used to build new

applications in the biomedical domain, such as a hypothesis generation system that

produces textual descriptions of proposed new research directions. To do so, the

conditional aspect of the CBAG model will likely be a necessity. However, we also

243

acknowledge the ethical considerations behind the proliferation of convincing scientific

language generation models. We provide the pre-trained model, over 13,000 generated

abstracts, and all necessary training and evaluation code to aid in exploration and

reproduceability.

244

Appendices

245

Appendix A

Hypergraph Partitioning Details

Table A.1: Hypergraph Details.

H |V | |E| V Deg. E Size
Mean Std. Mean Std.

as-caida 26475 16538 3.657 29.016 5.855 29.016
baxter 30722 24255 3.528 5.359 4.469 5.359
brainpc2 27606 27606 6.498 131.257 6.498 131.257
c-39 9271 9271 14.757 41.233 14.757 41.233
c-42 10471 10471 10.532 41.339 10.532 41.339
c-43 11125 11125 11.117 72.602 11.117 72.602
c-45 13206 13206 13.210 85.104 13.210 85.104
c-46 14913 14913 8.744 42.022 8.744 42.022
c-48 18354 18354 9.049 16.866 9.049 16.866
c-49 21132 21132 7.431 14.452 7.431 14.452
c-50 22401 22401 8.644 22.902 8.644 22.902
c/lp Mixture W/ Noise 107776 69568 5.379 12.552 8.333 12.552
c/lp Mixture 107776 69368 5.374 12.552 8.350 12.552
ca-AstroPh 18479 17490 21.369 30.683 22.577 30.683
ca-CondMat 22523 20760 8.194 10.671 8.890 10.671
ca-HepPh 11670 10514 20.181 47.173 22.400 47.173
cari 1200 400 127.333 178.662 382.000 178.662
case9 14453 14453 10.238 105.257 10.238 105.257
cit-HepPh 28093 29526 14.913 27.227 14.189 27.227
cit-HepTh 22908 22610 15.294 43.314 15.496 43.314
co9 22829 10694 4.799 5.264 10.245 5.264
com-dblp-cmty 260998 13477 2.758 4.340 53.411 4.340
coupled 11341 11317 8.685 30.083 8.704 30.083
cq9 21503 9247 4.493 4.673 10.449 4.673
cvxqp3 17500 17500 6.998 3.626 6.998 3.626
deter0 Mixture 21872 7845 2.061 0.900 5.746 0.900
e18 38601 24617 4.053 5.472 6.356 5.472
email-Enron 35153 25481 10.140 33.809 13.989 33.809
email-EuAll 60532 33292 3.765 24.650 6.846 24.650

246

H |V | |E| V Deg. E Size
Mean Std. Mean Std.

fome12 48920 24284 2.913 1.303 5.869 1.303
hangGlider 4 15561 15561 9.609 110.835 9.609 110.835
hangGlider 5 16011 16011 9.696 112.427 9.696 112.427
hvdc1 24842 24842 6.440 2.936 6.440 2.936
jnlbrng1 40000 40000 4.980 0.141 4.980 0.141
lowThrust 4 13562 13562 11.867 64.031 11.867 64.031
lowThrust 5 16262 16262 12.198 70.124 12.198 70.124
lp ken Mixture 32418 19219 10.513 10.796 17.733 10.796
lp ken 13 42659 23393 2.157 0.542 3.933 0.542
lp osa 07 25067 1118 5.777 1.032 129.528 1.032
lp pds 10 49932 16239 2.149 0.424 6.607 0.424
lpi bgindy Mixture 97920 30322 11.824 9.319 38.182 9.319
lpi ceria3d Mixture 39600 35384 11.891 23.733 13.308 23.733
lpi gosh 13356 3662 7.474 5.231 27.260 5.231
lpi greenbea Mixture 50319 24711 12.288 9.328 25.023 9.328
lpl3 33686 10655 2.979 0.184 9.418 0.184
Graph Mixture W/ Noise 110703 55507 3.650 2.971 7.279 2.971
Graph Mixture 110703 55307 3.645 2.970 7.296 2.970
memplus 17758 17758 7.104 22.035 7.104 22.035
mod2 65990 34355 3.022 2.883 5.804 2.883
model10 16819 4398 8.940 4.645 34.191 4.645
mult dcop 01 25019 24817 7.710 144.682 7.773 144.682
mult dcop 02 25019 24817 7.710 144.682 7.773 144.682
mult dcop 03 25019 24817 7.708 144.682 7.771 144.682
nemsemm2 48857 6922 3.725 2.568 26.292 2.568
nemswrld 28496 6512 6.743 5.108 29.507 5.108
nsir 10055 4450 15.409 25.894 34.817 25.894
nug08-3rd 29856 19728 4.971 3.505 7.523 3.505
obstclae 39996 39996 4.941 0.418 4.941 0.418
OPF 3754 15435 15435 10.254 5.531 10.254 5.531
p010 19081 10071 6.183 4.984 11.715 4.984
p2p-Gnutella30 36345 9205 2.416 2.594 9.539 2.594
p2p-Gnutella31 62023 15383 2.368 2.669 9.549 2.669
pds10 16558 16558 9.038 7.258 9.038 7.258
pltexpa 70364 26894 2.033 1.288 5.319 1.288
psse0 11028 26694 9.286 6.075 3.836 6.075
psse2 11028 28632 10.452 6.713 4.026 6.713
rajat09 24482 24391 4.309 1.117 4.325 1.117
rajat10 30202 30101 4.311 1.116 4.326 1.116
rajat22 39801 38431 4.919 24.574 5.095 24.574
rajat27 20540 19163 4.786 16.261 5.130 16.261
release-flickr-links x0 10 18612 18612 15.842 38.179 15.842 38.179
release-youtube-links x0 100 115782 115778 3.999 7.222 3.999 7.222
release-youtube-links x0 25 28945 28938 3.996 7.784 3.997 7.784
release-youtube-links x0 50 57891 57888 3.999 7.222 3.999 7.222
sc205-2r 62422 35212 1.974 18.129 3.500 18.129
scagr7-2r 46679 32846 2.574 35.334 3.658 35.334
scfxm1-2b 33047 18266 3.337 6.509 6.038 6.509
scsd8-2b 35910 5130 3.140 17.607 21.982 17.607
scsd8-2c 35910 5130 3.140 17.607 21.982 17.607
scsd8-2r 60550 8650 3.141 22.885 21.990 22.885
sctap1-2b 33858 15390 2.937 17.447 6.462 17.447

247

H |V | |E| V Deg. E Size
Mean Std. Mean Std.

sctap1-2r 63426 28830 2.938 23.857 6.464 23.857
soc-Epinions1 50328 31149 9.530 39.646 15.398 39.646
soc-Slashdot0811 77355 70893 11.622 37.228 12.682 37.228
soc-Slashdot0902 82159 71882 11.464 37.486 13.103 37.486
soc-sign-Slashdot081106 64371 27753 7.783 32.163 18.051 32.163
soc-sign-Slashdot090216 68836 30554 7.734 32.971 17.423 32.971
soc-sign-Slashdot090221 69038 30670 7.761 33.115 17.471 33.115
soc-sign-epinions 76359 42470 10.327 43.547 18.567 43.547
south31 35885 17989 3.120 132.364 6.224 132.364
stormg2-27 37485 14306 2.513 2.000 6.584 2.000
torsion1 39996 39996 4.941 0.418 4.941 0.418
ulevimin 46754 6394 3.515 2.714 25.703 2.714
wiki-Vote 2355 3728 43.018 40.735 27.175 40.735
world 66747 34106 2.974 2.751 5.820 2.751
youtube 90581 18173 3.107 8.121 15.487 8.121

248

F
ig

u
re

A
.1

:
D

is
tr

ib
u
ti

on
of

n
o
d
es

an
d

ed
ge

s
fo

r
ea

ch
h
y
p

er
gr

ap
h

p
re

se
n
t

in
ou

r
b

en
ch

m
ar

k
.

G
ra

p
h
s

ar
e

so
rt

ed
b
y

n
u
m

b
er

of
n
o
d
es

.

249

F
ig

u
re

A
.2

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
co

n
n
ec

ti
v
it

y
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
m

ea
n

to
su

m
m

ar
iz

e
tr

ia
ls

.

250

F
ig

u
re

A
.3

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
co

n
n
ec

ti
v
it

y
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
m

in
to

su
m

m
ar

iz
e

tr
ia

ls
.

251

F
ig

u
re

A
.4

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
co

n
n
ec

ti
v
it

y
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
m

ax
to

su
m

m
ar

iz
e

tr
ia

ls
.

252

F
ig

u
re

A
.5

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
co

n
n
ec

ti
v
it

y
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
st

d
to

su
m

m
ar

iz
e

tr
ia

ls
.

253

F
ig

u
re

A
.6

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
cu

t
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
m

ea
n

to
su

m
m

ar
iz

e
tr

ia
ls

.

254

F
ig

u
re

A
.7

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
cu

t
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
m

in
to

su
m

m
ar

iz
e

tr
ia

ls
.

255

F
ig

u
re

A
.8

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
cu

t
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
m

ax
to

su
m

m
ar

iz
e

tr
ia

ls
.

256

F
ig

u
re

A
.9

:
T

h
e

ab
ov

e
d
ep

ic
ts

th
e

av
er

ag
e

im
p
ro

ve
m

en
t

of
th

e
cu

t
ob

je
ct

iv
e

fo
r

al
l

co
n
si

d
er

ed
p
ar

ti
ti

on
er

s
ag

ai
n
st

al
l

b
as

el
in

es
.

T
h
e

va
lu

es
in

ea
ch

ce
ll

co
rr

es
p

on
d

to
th

e
m

ac
ro

-s
u
m

m
ar

y
I

u
si

n
g
G

=
st

d
to

su
m

m
ar

iz
e

tr
ia

ls
.

257

Bibliography

[1] Citations added to medline by fiscal year. https://www.nlm.nih.gov/bsd/

stats/cit_added.html.

[2] HGNC Database. European Molecular Biology Laboratory, European Bioinfor-
matics Institute.

[3] MadGrades - UW Madison Grade Distributions. https://madgrades.com. Ac-
cessed: 2018-10-25.

[4] Rediscovering don swanson: The past, present and future of literature-based
discovery.

[5] Semantic types. https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml.

[6] Specialist nlp tools. https://lsg3.nlm.nih.gov/LexSysGroup/Projects/

lvg/current/web/index.html, 2006.

[7] Umls reference manual. https://www.ncbi.nlm.nih.gov/books/NBK9684/,
2009.

[8] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning. In OSDI, volume 16,
pages 265–283, 2016.

[9] Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning
with graphs. In Proceedings of the 23rd international conference on Machine
learning, pages 17–24. ACM, 2006.

[10] Marina Aksenova, Justin Sybrandt, Biyun Cui, Vitali Sikirzhytski, Hao Ji, Di-
ana Odhiambo, Matthew D Lucius, Jill R Turner, Eugenia Broude, Edsel Peña,
et al. Inhibition of the dead box rna helicase 3 prevents hiv-1 tat and cocaine-
induced neurotoxicity by targeting microglia activation. Journal of Neuroim-
mune Pharmacology, pages 1–15, 2019.

258

https://www.nlm.nih.gov/bsd/stats/cit_added.html
https://www.nlm.nih.gov/bsd/stats/cit_added.html
https://madgrades.com
https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml
https://lsg3.nlm.nih.gov/LexSysGroup/Projects/lvg/current/web/index.html
https://lsg3.nlm.nih.gov/LexSysGroup/Projects/lvg/current/web/index.html
https://www.ncbi.nlm.nih.gov/books/NBK9684/

[11] Ludmil B Alexandrov, Serena Nik-Zainal, David C Wedge, Samuel AJR Apari-
cio, Sam Behjati, Andrew V Biankin, Graham R Bignell, Niccolo Bolli, Ake
Borg, Anne-Lise Børresen-Dale, and others. Signatures of mutational processes
in human cancer. 500(7463):415–421.

[12] Malorye Allison. NCATS launches drug repurposing program. Nature Research.

[13] Oxford Analytica. ’deepfakes’ could irreparably damage public trust. Emerald
Expert Briefings, (oxan-db).

[14] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice:
Semantic propositional image caption evaluation. In European Conference on
Computer Vision, pages 382–398. Springer, 2016.

[15] Robin Andre, Sebastian Schlag, and Christian Schulz. Memetic multilevel hy-
pergraph partitioning. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO ’18, pages 347–354, 2018.

[16] Christos Andronis, Anuj Sharma, Vassilis Virvilis, Spyros Deftereos, and Aris
Persidis. Literature mining, ontologies and information visualization for drug
repurposing. 12(4):357–368.

[17] Patrick Arnold and Erhard Rahm. Semrep: A repository for semantic mapping.
Datenbanksysteme für Business, Technologie und Web (BTW 2015), 2015.

[18] Nadine Bakkar, Tina Kovalik, Ileana Lorenzini, Scott Spangler, Alix Lacoste,
Kyle Sponaugle, Philip Ferrante, Elenee Argentinis, Rita Sattler, and Robert
Bowser. Artificial intelligence in neurodegenerative disease research: use of
IBM watson to identify additional RNA-binding proteins altered in amyotrophic
lateral sclerosis. 135(2):227–247.

[19] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network
medicine: a network-based approach to human disease. Nature reviews genetics,
12(1):56, 2011.

[20] Stephen T Barnard and Horst D Simon. Fast multilevel implementation of re-
cursive spectral bisection for partitioning unstructured problems. Concurrency
and computation: Practice and Experience, 6(2):101–117, 1994.

[21] Fredrik Barrenas, Sreenivas Chavali, Petter Holme, Reza Mobini, and Mikael
Benson. Network properties of complex human disease genes identified through
genome-wide association studies. PloS one, 4(11):e8090, 2009.

[22] Iz Beltagy, Arman Cohan, and Kyle Lo. Scibert: Pretrained contextualized
embeddings for scientific text. arXiv preprint arXiv:1903.10676, 2019.

259

[23] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155, 2003.

[24] Chris Beyrer, Andrea L Wirtz, Stefan Baral, Alena Peryskina, and Frangiscos
Sifakis. Epidemiologic links between drug use and HIV epidemics: an interna-
tional perspective. 55:S10–S16.

[25] Charles-Edmond Bichot and Patrick Siarry. Graph partitioning. Wiley Online
Library, 2011.

[26] Mohammed Bilgrami and Paul O’keefe. Neurologic diseases in HIV-infected
patients. In Handbook of clinical neurology, volume 121, pages 1321–1344. El-
sevier.

[27] David C. Blair and M. E. Maron. An evaluation of retrieval effectiveness for a
full-text document-retrieval system. 28(3):289–299.

[28] Catherine Blake and Wanda Pratt. Automatically identifying candidate treat-
ments from existing medical literature. In AAAI Spring Symposium on Mining
Answers from Texts and Knowledge Bases, pages 9–13.

[29] David M Blei. Probabilistic topic models. Communications of the ACM,
55(4):77–84, 2012.

[30] David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of
the 23rd international conference on Machine learning, pages 113–120. ACM.

[31] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
3:993–1022.

[32] Marc Jonathan Blitz. Lies, line drawing, and deep fake news. Okla. L. Rev.,
71:59, 2018.

[33] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.
Recommender systems survey. Knowledge-based systems, 46:109–132, 2013.

[34] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching word vectors with subword information. Transactions of the Association
for Computational Linguistics, 5:135–146, 2017.

[35] Guus M Bol, Farhad Vesuna, Min Xie, Jing Zeng, Khaled Aziz, Nishant Gandhi,
Anne Levine, Ashley Irving, Dorian Korz, Saritha Tantravedi, and others. Tar-
geting DDX3 with a small molecule inhibitor for lung cancer therapy. 7(5):648–
669.

260

[36] Guus Martinus Bol, Min Xie, and Venu Raman. DDX3, a potential target for
cancer treatment. 14(1):188.

[37] Erik G Boman, Umit V Catalyurek, Cédric Chevalier, Karen D Devine, Ilya
Safro, and Michael M Wolf. Advances in parallel partitioning, load balancing
and matrix ordering for scientific computing. In Journal of Physics: Conference
Series, volume 180, pages 12008–12013. Institute of Physics Publishing, 2009.

[38] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational data.
In Advances in neural information processing systems, pages 2787–2795, 2013.

[39] A. Brandt and D. Ron. Chapter 1 : Multigrid solvers and multilevel optimiza-
tion strategies. In J. Cong and J. R. Shinnerl, editors, Multilevel Optimization
and VLSICAD. Kluwer, 2003.

[40] Achi Brandt, James J. Brannick, Karsten Kahl, and Irene Livshits. Bootstrap
AMG. SIAM J. Scientific Computing, 33(2):612–632, 2011.

[41] Peter Bruza and Marc Weeber. Literature-based discovery. Springer Science &
Business Media.

[42] Shilpa Buch, Honghong Yao, Minglei Guo, Tomohisa Mori, Blaise Mathias-
Costa, Vijeta Singh, Pankaj Seth, John Wang, and Tsung-Ping Su. Cocaine
and HIV-1 interplay in CNS: cellular and molecular mechanisms. 10(5):425–428.

[43] Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge
partitions is np-hard. Information Processing Letters, 42(3):153–159, 1992.

[44] Aydin Buluc and Erik G. Boman. Towards scalable parallel hypergraph par-
titioning. In CSRI Summer Proceedings 2008, pages 109–119. Sandia National
Labs, 2008.

[45] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent advances in graph partitioning. In Algorithm Engineering, pages
117–158. Springer, 2016.

[46] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning
graph representations. In Thirtieth AAAI conference on artificial intelligence,
2016.

[47] Ümit Çatalyürek and Cevdet Aykanat. Patoh (partitioning tool for hyper-
graphs). Encyclopedia of Parallel Computing, pages 1479–1487, 2011.

[48] Umit V Catalyurek and Cevdet Aykanat. Hypergraph-partitioning based de-
composition for parallel sparse-matrix vector multiplication. 10(7):673–693.

261

[49] HH Chen, HI Yu, WC Cho, and WY Tarn. DDX3 modulates cell adhesion
and motility and cancer cell metastasis via rac1-mediated signaling pathway.
34(21):2790–2800.

[50] Jie Chen and Ilya Safro. Algebraic distance on graphs. 33(6):3468–3490.

[51] Ying Chen, JD Elenee Argentinis, and Griff Weber. Ibm watson: how cognitive
computing can be applied to big data challenges in life sciences research. Clinical
therapeutics, 38(4):688–701, 2016.

[52] Byung-Kwon Choi, Tajhal Dayaram, Neha Parikh, Angela D Wilkins, Meena
Nagarajan, Ilya B Novikov, Benjamin J Bachman, Sung Yun Jung, Peter J
Haas, Jacques L Labrie, et al. Literature-based automated discovery of tumor
suppressor p53 phosphorylation and inhibition by nek2. Proceedings of the
National Academy of Sciences, 115(42):10666–10671, 2018.

[53] François Chollet et al. Keras. https://keras.io, 2015.

[54] K. Bretonnel Cohen, Helen L. Johnson, Karin Verspoor, Christophe Roeder,
and Lawrence E. Hunter. The structural and content aspects of abstracts versus
bodies of full text journal articles are different. 11(1):492.

[55] Michael D Conover, Bruno Gonçalves, Jacob Ratkiewicz, Alessandro Flammini,
and Filippo Menczer. Predicting the political alignment of twitter users. In
Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational
Conference on Social Computing (SocialCom), 2011 IEEE Third International
Conference on, pages 192–199. IEEE.

[56] Mark Craven, Johan Kumlien, et al. Constructing biological knowledge bases
by extracting information from text sources. In ISMB, volume 1999, pages
77–86, 1999.

[57] Cristina-Maria Cruciat, Christine Dolde, Reinoud EA de Groot, Bisei
Ohkawara, Carmen Reinhard, Hendrik C Korswagen, and Christof Niehrs. RNA
helicase DDX3 is a regulatory subunit of casein kinase 1 in wnt–β-catenin sig-
naling. 339(6126):1436–1441.

[58] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collec-
tion. ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[59] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, Antonio
Scala, Guido Caldarelli, H Eugene Stanley, and Walter Quattrociocchi. The
spreading of misinformation online. Proceedings of the National Academy of
Sciences, 113(3):554–559, 2016.

262

https://keras.io

[60] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[61] Neo4J Developers. Neo4j. https://neo4j.com/.

[62] Karen D Devine, Erik G Boman, Robert T Heaphy, Rob H Bisseling, and
Umit V Catalyurek. Parallel hypergraph partitioning for scientific computing.
In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pages 10–pp. IEEE, 2006.

[63] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, 2019.

[64] Anna Divoli, Eneida A Mendonça, James A Evans, and Andrey Rzhetsky. Con-
flicting biomedical assumptions for mathematical modeling: the case of cancer
metastasis. 7(10):e1002132.

[65] Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, and Cristian Canton
Ferrer. The deepfake detection challenge (dfdc) preview dataset. arXiv preprint
arXiv:1910.08854, 2019.

[66] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scal-
able representation learning for heterogeneous networks. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 135–144. ACM, 2017.

[67] Mauro Bittencourt Dos Santos. The textual organization of research paper
abstracts in applied linguistics. 16(4):481–500.

[68] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. 12:2121–2159.

[69] Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare R Voss, and Jiawei Han.
Scalable topical phrase mining from text corpora. 8(3):305–316.

[70] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[71] Lauri Eronen and Hannu Toivonen. Biomine: predicting links between biolog-
ical entities using network models of heterogeneous databases. BMC bioinfor-
matics, 13(1):119, 2012.

263

https://neo4j.com/

[72] James A Evans and Andrey Rzhetsky. Advancing science through mining li-
braries, ontologies, and communities. 286(27):23659–23666.

[73] W.A. et al. Falcon. Pytorch lightning. https://github.com/

PytorchLightning/pytorch-lightning, 2019.

[74] Christos Faloutsos. Signature-based text retrieval methods: A survey. IEEE
Data Eng. Bull., 13(1):25–32, 1990.

[75] Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic for
improving network partitions. In Papers on Twenty-five years of electronic
design automation, pages 241–247. ACM, 1988.

[76] Luciano Floridi. Artificial intelligence, deepfakes and a future of ectypes. Phi-
losophy & Technology, 31(3):317–321, 2018.

[77] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–
174, 2010.

[78] Jacob G Foster, Andrey Rzhetsky, and James A Evans. Tradition and innova-
tion in scientists’ research strategies. 80(5):875–908.

[79] Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. BiNE: Bipartite
Network Embedding. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, SIGIR ’18, pages 715–
724, New York, NY, USA, 2018. ACM.

[80] Kwang-Il Goh, Michael E Cusick, David Valle, Barton Childs, Marc Vidal, and
Albert-László Barabási. The human disease network. 104(21):8685–8690.

[81] Vishrawas Gopalakrishnan, Kishlay Jha, Guangxu Xun, Hung Q Ngo, and
Aidong Zhang. Towards self-learning based hypotheses generation in biomedical
text domain. Bioinformatics, 34(12):2103–2115, 2018.

[82] Vishrawas Gopalakrishnan, Kishlay Jha, Aidong Zhang, and Wei Jin. Generat-
ing hypothesis: Using global and local features in graph to discover new knowl-
edge from medical literature. In Proceedings of the 8th International Conference
on Bioinformatics and Computational Biology, BICOB, pages 23–30, 2016.

[83] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[84] Derek Greene, Gerard Cagney, Nevan Krogan, and Pádraig Cunningham. En-
semble non-negative matrix factorization methods for clustering protein–protein
interactions. 24(15):1722–1728.

264

https://github.com/PytorchLightning/pytorch-lightning
https://github.com/PytorchLightning/pytorch-lightning

[85] Thomas L Griffiths, Michael I Jordan, Joshua B Tenenbaum, and David M
Blei. Hierarchical topic models and the nested chinese restaurant process. In
Advances in neural information processing systems, pages 17–24.

[86] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. 101:5228–5235.

[87] Chris Gropp, Alexander Herzog, Ilya Safro, Paul W Wilson, and Amy W
Apon. Scalable dynamic topic modeling with clustered latent dirichlet allo-
cation (CLDA).

[88] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 855–864. ACM, 2016.

[89] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 297–304, 2010.

[90] A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A. Mckusick.
Online mendelian inheritance in man (OMIM), a knowledgebase of human genes
and genetic disorders. 33.

[91] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-
niques. Elsevier.

[92] Lei Hao, Zhongmin Zou, Hong Tian, Yubo Zhang, Huchuan Zhou, and Lei Liu.
Stem cell-based therapies for ischemic stroke. 2014:468748.

[93] Megan L Head, Luke Holman, Rob Lanfear, Andrew T Kahn, and Michael D
Jennions. The extent and consequences of p-hacking in science. PLoS biology,
13(3):e1002106, 2015.

[94] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural
networks for perception, pages 65–93. Elsevier, 1992.

[95] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram.
The total variation on hypergraphs-learning on hypergraphs revisited. In Ad-
vances in Neural Information Processing Systems, pages 2427–2435, 2013.

[96] Sam Henry. Indirect relatedness, evaluation, and visualization for literature
based discovery. 2019.

[97] Go Eun Heo, Keeheon Lee, and Min Song. Inferring undiscovered public knowl-
edge by using text mining-driven graph model. In Proceedings of the ACM 8th
International Workshop on Data and Text Mining in Bioinformatics, pages 37–
37. ACM.

265

[98] William Hersh, Chris Buckley, TJ Leone, and David Hickam. OHSUMED: an
interactive retrieval evaluation and new large test collection for research. In
SIGIR’94, pages 192–201. Springer.

[99] Tobias Heuer, Peter Sanders, and Sebastian Schlag. Network Flow-Based Re-
finement for Multilevel Hypergraph Partitioning. In 17th International Sympo-
sium on Experimental Algorithms (SEA 2018), pages 1:1–1:19, 2018.

[100] Tobias Heuer and Sebastian Schlag. Improving coarsening schemes for hyper-
graph partitioning by exploiting community structure. In 16th International
Symposium on Experimental Algorithms, (SEA 2017), pages 21:1–21:19, 2017.

[101] Lynette Hirschman, Alexander Yeh, Christian Blaschke, and Alfonso Valen-
cia. Overview of BioCreAtIvE: critical assessment of information extraction for
biology. 6(1):S1.

[102] Dimitar Hristovski, Carol Friedman, Thomas C Rindflesch, and Borut Peterlin.
Exploiting semantic relations for literature-based discovery. In AMIA annual
symposium proceedings, volume 2006, page 349. American Medical Informatics
Association, 2006.

[103] Dimitar Hristovski, Borut Peterlin, Joyce A Mitchell, and Susanne M
Humphrey. Using literature-based discovery to identify disease candidate genes.
74(2):289–298.

[104] Xiaohua Hu, Guangrong Li, Illhoi Yoo, Xiaodan Zhang, and Xuheng Xu.
A semantic-based approach for mining undiscovered public knowledge from
biomedical literature. In Granular Computing, 2005 IEEE International Con-
ference on, volume 1, pages 22–27. IEEE.

[105] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P
Xing. Toward controlled generation of text. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 1587–1596. JMLR.
org, 2017.

[106] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for
nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence, 33(1):117–128, 2010.

[107] Antti Jekunen. Decision-making in product portfolios of pharmaceutical re-
search and development–managing streams of innovation in highly regulated
markets. 8:2009.

[108] Rob Jelier, Martijn J Schuemie, Antoine Veldhoven, Lambert CJ Dorssers,
Guido Jenster, and Jan A Kors. Anni 2.0: a multipurpose text-mining tool
for the life sciences. Genome biology, 9(6):R96, 2008.

266

[109] Kishlay Jha, Guangxu Xun, Yaqing Wang, Vishrawas Gopalakrishnan, and
Aidong Zhang. Concepts-bridges: Uncovering conceptual bridges based on
biomedical concept evolution. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pages 1599–1607,
2018.

[110] Kishlay Jha, Guangxu Xun, Yaqing Wang, and Aidong Zhang. Hypothesis gen-
eration from text based on co-evolution of biomedical concepts. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 843–851, 2019.

[111] Emmanuel John and Ilya Safro. Single-and multi-level network sparsification
by algebraic distance. Journal of Complex Networks, 5(3):352–388, 2016.

[112] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search
with gpus. arXiv preprint arXiv:1702.08734, 2017.

[113] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve
Jégou, and Tomas Mikolov. FastText.zip: Compressing text classification mod-
els.

[114] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of
tricks for efficient text classification. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers, pages 427–431. Association for Computational Linguistics, April
2017.

[115] George Karypis. hmetis 1.5: A hypergraph partitioning package. http://www.
cs. umn. edu/˜ metis, 1998.

[116] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel
hypergraph partitioning: applications in vlsi domain. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 7(1):69–79, 1999.

[117] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[118] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for parti-
tioning graphs. Bell Syst. Tech. J., 49(2):291–307, 1970.

[119] Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and
Richard Socher. Ctrl: A conditional transformer language model for controllable
generation. arXiv preprint arXiv:1909.05858, 2019.

[120] Halil Kilicoglu, Dongwook Shin, Marcelo Fiszman, Graciela Rosemblat, and
Thomas C Rindflesch. SemMedDB: a PubMed-scale repository of biomedical
semantic predications. 28(23):3158–3160.

267

[121] Yong Hwan Kim and Min Song. A context-based abc model for literature-based
discovery. PloS one, 14(4), 2019.

[122] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[123] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM (JACM), 46(5):604–632, 1999.

[124] Ronald N Kostoff, Joel A Block, Jeffrey L Solka, Michael B Briggs, Robert L
Rushenberg, Jesse A Stump, Dustin Johnson, Terence J Lyons, and Jeffrey R
Wyatt. Literature-related discovery. Annual review of information science and
technology, 43(1):1–71, 2009.

[125] Jane Kovalevich and Dianne Langford. Neuronal toxicity in HIV CNS disease.
7(7):687–698.

[126] Jacek Krol, Ilona Krol, Claudia Patricia Patino Alvarez, Michele Fiscella, An-
dreas Hierlemann, Botond Roska, and Witold Filipowicz. A network comprising
short and long noncoding RNAs and RNA helicase controls mouse retina archi-
tecture. 6.

[127] Taku Kudo. Subword regularization: Improving neural network translation
models with multiple subword candidates. arXiv preprint arXiv:1804.10959,
2018.

[128] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[129] Ann D Kwong, B Govinda Rao, and Kuan-Teh Jeang. Viral and cellular RNA
helicases as antiviral targets. 4(10):845–853.

[130] Peder Olesen Larsen and Markus Von Ins. The rate of growth in scientific publi-
cation and the decline in coverage provided by science citation index. 84(3):575–
603.

[131] Alon Lavie and Abhaya Agarwal. Meteor: An automatic metric for mt evalu-
ation with high levels of correlation with human judgments. In Proceedings of
the second workshop on statistical machine translation, pages 228–231, 2007.

[132] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1188–1196.

[133] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, 1999.

268

[134] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix
factorization. In Advances in neural information processing systems, pages 556–
562, 2001.

[135] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. Biobert: pre-trained biomedical language rep-
resentation model for biomedical text mining. arXiv preprint arXiv:1901.08746,
2019.

[136] Sejoon Lee, Kwang H Lee, Min Song, and Doheon Lee. Building the process-
drug–side effect network to discover the relationship between biological pro-
cesses and side effects. In BMC bioinformatics, volume 12, page S2. BioMed
Central, 2011.

[137] Claire Leibowicz, Steven Adler, and Peter Eckersley. When is it appropriate to
publish high-stakes ai research. Partnership on AI blog post, 2019.

[138] Thomas Lengauer. Combinatorial algorithms for integrated circuit layout.
Springer Science & Business Media, 2012.

[139] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Ab-
hijit Bose, and Alex Peysakhovich. PyTorch-BigGraph: A Large-scale Graph
Embedding System. In Proceedings of the 2nd SysML Conference, Palo Alto,
CA, USA, 2019.

[140] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset
collection.

[141] Sven Leyffer and Ilya Safro. Fast response to infection spread and cyber attacks
on large-scale networks. Journal of Complex Networks, 1(2):183–199, 2013.

[142] Anthony ML Liekens, Jeroen De Knijf, Walter Daelemans, Bart Goethals, Peter
De Rijk, and Jurgen Del-Favero. Biograph: unsupervised biomedical knowledge
discovery via automated hypothesis generation. Genome biology, 12(6):R57,
2011.

[143] Chin-Yew Lin, Guihong Cao, Jianfeng Gao, and Jian-Yun Nie. An information-
theoretic approach to automatic evaluation of summaries. In Proceedings of
the main conference on Human Language Technology Conference of the North
American Chapter of the Association of Computational Linguistics, pages 463–
470. Association for Computational Linguistics, 2006.

[144] Donald AB Lindberg, Betsy L Humphreys, and Alexa T McCray. The unified
medical language system. 32(4):281–291.

269

[145] Chun-Chi Liu, Yu-Ting Tseng, Wenyuan Li, Chia-Yu Wu, Ilya Mayzus, Andrey
Rzhetsky, Fengzhu Sun, Michael Waterman, Jeremy JW Chen, Preet M Chaud-
hary, and others. DiseaseConnect: a comprehensive web server for mechanism-
based disease–disease connections. 42:W137–W146.

[146] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E
Alsaadi. A survey of deep neural network architectures and their applications.
Neurocomputing, 234:11–26, 2017.

[147] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

[148] Zhiyuan Liu, Yuzhou Zhang, Edward Y Chang, and Maosong Sun. Plda+:
Parallel latent dirichlet allocation with data placement and pipeline processing.
2(3):26.

[149] Oren E Livne and Achi Brandt. Lean algebraic multigrid (LAMG): Fast graph
Laplacian linear solver. SIAM Journal on Scientific Computing, 34(4):B499–
B522, 2012.

[150] Edward Loper and Steven Bird. Nltk: the natural language toolkit. arXiv
preprint cs/0205028, 2002.

[151] Giovanni Maga, Federico Falchi, Anna Garbelli, Amalia Belfiore, Myriam
Witvrouw, Fabrizio Manetti, and Maurizio Botta. Pharmacophore modeling
and molecular docking led to the discovery of inhibitors of human immunodefi-
ciency virus-1 replication targeting the human cellular aspartic acid- glutamic
acid- alanine- aspartic acid box polypeptide 3. 51(21):6635–6638.

[152] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, and others.
Introduction to information retrieval, volume 1. Cambridge university press
Cambridge.

[153] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[154] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev
Khudanpur. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association, 2010.

[155] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,

270

editors, Advances in Neural Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc., 2013.

[156] Dunja Mladenić. Feature subset selection in text-learning. In European Con-
ference on Machine Learning, pages 95–100. Springer, 1998.

[157] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network
language model. In Aistats, volume 5, pages 246–252, 2005.

[158] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In International Conference on Computer
Vision Theory and Application VISSAPP’09), pages 331–340. INSTICC Press.

[159] Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high
dimensional data. 36(11):2227–2240.

[160] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno
Ribeiro. Janossy pooling: Learning deep permutation-invariant functions for
variable-size inputs. In International Conference on Learning Representations,
2019.

[161] Uwe Naumann and Olaf Schenk. Combinatorial scientific computing. CRC
Press, 2012.

[162] NCBI Resource Coordinators. PubMed. https://www.ncbi.nlm.nih.gov/

pubmed/.

[163] Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. Scispacy: Fast
and robust models for biomedical natural language processing. arXiv preprint
arXiv:1902.07669, 2019.

[164] Mark Newman. Networks: an introduction. Oxford university press.

[165] TI Oprea and J Mestres. Drug repurposing: far beyond new targets for old
drugs. 14(4):759–763.

[166] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics, pages 311–
318. Association for Computational Linguistics, 2002.

[167] Yifan Peng, Shankai Yan, and Zhiyong Lu. Transfer learning in biomedical nat-
ural language processing: An evaluation of bert and elmo on ten benchmarking
datasets. In Proceedings of the 2019 Workshop on Biomedical Natural Language
Processing (BioNLP 2019), 2019.

271

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/

[168] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 701–710. ACM,
2014.

[169] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H Miller, and Sebastian Riedel. Language models as knowledge
bases? arXiv preprint arXiv:1909.01066, 2019.

[170] Wanda Pratt and Meliha Yetisgen-Yildiz. LitLinker: capturing connections
across the biomedical literature. In Proceedings of the 2nd international con-
ference on Knowledge capture, pages 105–112. ACM.

[171] Murali K Pusala, Ryan G Benton, Vijay V Raghavan, and Raju N Got-
tumukkala. Supervised approach to rank predicted links using interesting-
ness measures. In 2017 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 1085–1092. IEEE, 2017.

[172] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative pre-
training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper.
pdf, 2018.

[173] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[174] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. arXiv e-prints, 2019.

[175] Juan Ramos et al. Using tf-idf to determine word relevance in document queries.
In Proceedings of the first instructional conference on machine learning, volume
242, pages 133–142. Piscataway, NJ, 2003.

[176] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693–701, 2011.

[177] David Reinsel, John Gantz, and John Rydning. Data age 2025: The evolution
of data to life-critical. Don’t Focus on Big Data, pages 2–24, 2017.

[178] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and
task scheduling. In Kathryn Huff and James Bergstra, editors, Proceedings of
the 14th Python in Science Conference, pages 130 – 136, 2015.

272

[179] Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and mul-
tiscale graph organization. 9(1):407–423.

[180] Andrey Rzhetsky. The big mechanism program: Changing how science is done.

[181] Andrey Rzhetsky, Jacob G Foster, Ian T Foster, and James A Evans. Choosing
experiments to accelerate collective discovery. 112(47):14569–14574.

[182] Ilya Safro, Paul D Hovland, Jaewook Shin, and Michelle Mills Strout. Improving
random walk performance. In CSC, pages 108–112, 2009.

[183] Ilya Safro, Dorit Ron, and Achi Brandt. Graph minimum linear arrangement
by multilevel weighted edge contractions. Journal of Algorithms, 60(1):24 – 41,
2006.

[184] Ilya Safro, Peter Sanders, and Christian Schulz. Advanced coarsening schemes
for graph partitioning. Journal of Experimental Algorithmics (JEA), 19:2–2,
2015.

[185] Ilya Safro and Boris Temkin. Multiscale approach for the network compression-
friendly ordering. Journal of Discrete Algorithms, 9(2):190–202, 2011.

[186] Sabindra K Samal, Samapika Routray, Ganesh Kumar Veeramachaneni, Rupesh
Dash, and Mahendran Botlagunta. Ketorolac salt is a newly discovered DDX3
inhibitor to treat oral cancer. 5:9982.

[187] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning
algorithms. In European Symposium on Algorithms, pages 469–480. Springer,
2011.

[188] Shengtian Sang, Zhihao Yang, Xiaoxia Liu, Lei Wang, Hongfei Lin, Jian Wang,
and Michel Dumontier. Gredel: A knowledge graph embedding based method
for drug discovery from biomedical literatures. IEEE Access, 7:8404–8415, 2018.

[189] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter
Sanders, and Christian Schulz. k-way hypergraph partitioning via n-level recur-
sive bisection. In 18th Workshop on Algorithm Engineering and Experiments,
(ALENEX 2016), pages 53–67, 2016.

[190] M. J. Schuemie, M. Weeber, B. J. A. Schijvenaars, E. M. van Mulligen, C. C.
van der Eijk, R. Jelier, B. Mons, and J. A. Kors. Distribution of information
in biomedical abstracts and full-text publications. 20(16).

[191] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine transla-
tion of rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

273

[192] Parantu K Shah, Carolina Perez-Iratxeta, Peer Bork, and Miguel A Andrade.
Information extraction from full text scientific articles: where are the keywords?
4(1):20.

[193] Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, and Jiawei
Han. Automated phrase mining from massive text corpora.

[194] Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Rele-
vance of unsupervised metrics in task-oriented dialogue for evaluating natural
language generation. CoRR, abs/1706.09799, 2017.

[195] Ruslan Shaydulin, Jie Chen, and Ilya Safro. Relaxation-based coarsening
for multilevel hypergraph partitioning. Multiscale Modeling & Simulation,
17(1):482–506, 2019.

[196] Ruslan Shaydulin and Ilya Safro. Aggregative coarsening for multilevel hyper-
graph partitioning. 17th International Symposium on Experimental Algorithms
(SEA 2018), 2018.

[197] Michael A Shepherd, Carolyn R Watters, and Yao Cai. Transient hypergraphs
for citation networks. Information Processing & Management, 26(3):395–412,
1990.

[198] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. A survey of
heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering, 29(1):17–37, 2016.

[199] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. A survey of
heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering, 29(1):17–37, 2017.

[200] Gail Sinclair and Bonnie Webber. Classification from full text: A comparison of
canonical sections of scientific papers. In Proceedings of the International Joint
Workshop on Natural Language Processing in Biomedicine and its Applications,
pages 66–69. Association for Computational Linguistics.

[201] Neil R Smalheiser. Literature-based discovery: Beyond the ABCs. 63(2):218–
224.

[202] Neil R Smalheiser and Don R Swanson. Linking estrogen to alzheimer’s disease
an informatics approach. 47(3):809–810.

[203] Neil R Smalheiser and Don R Swanson. Using ARROWSMITH: a computer-
assisted approach to formulating and assessing scientific hypotheses. 57(3):149–
153.

274

[204] Neil R Smalheiser, Vetle I Torvik, and Wei Zhou. Arrowsmith two-node search
interface: A tutorial on finding meaningful links between two disparate sets of
articles in MEDLINE. 94(2):190–197.

[205] NR Smalheiser and DR Swanson. Assessing a gap in the biomedical literature:
Magnesium deficiency and neurologic disease. 15(1):1–9.

[206] Larisa N Soldatova and Andrey Rzhetsky. Representation of research hypothe-
ses. 2(2):S9.

[207] John F Sowa. Principles of semantic networks: Explorations in the representa-
tion of knowledge. Morgan Kaufmann.

[208] Scott Spangler. Accelerating Discovery: Mining Unstructured Information for
Hypothesis Generation, volume 37. CRC Press.

[209] Scott Spangler, Angela D Wilkins, Benjamin J Bachman, Meena Nagarajan,
Tajhal Dayaram, Peter Haas, Sam Regenbogen, Curtis R Pickering, Austin
Comer, Jeffrey N Myers, and others. Automated hypothesis generation based
on mining scientific literature. In Proceedings of the 20th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 1877–1886.
ACM.

[210] Serena Spudich. HIV and neurocognitive dysfunction. 10(3):235–243.

[211] Padmini Srinivasan. Text mining: generating hypotheses from MEDLINE.
55(5):396–413.

[212] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[213] L.E. Stock. Strategic Logistics Management. Cram101 Textbook Outlines.
Lightning Source Inc, 2006.

[214] Jeremy Stribling, Max Krohn, and Dan Aguayo. Scigen-an automatic cs paper
generator, 2005.

[215] Mianen Sun, Ling Song, Tong Zhou, G Yancey Gillespie, and Richard S Jope.
The role of DDX3 in regulating snail. 1813(3):438–447.

[216] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin
Tian, Danxiang Zhu, Hao Tian, and Hua Wu. Ernie: Enhanced representation
through knowledge integration. arXiv preprint arXiv:1904.09223, 2019.

275

[217] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks
for language modeling. In Thirteenth annual conference of the international
speech communication association, 2012.

[218] Don Swanson and Neil Smalheiser. Link analysis of MEDLINE titles as an aid
to scientific discovery. In Proceedings of the AAAI Fall Symposium on Artificial
Intelligence and Link Analysis, pages 94–97.

[219] Don R Swanson. Fish oil, raynaud’s syndrome, and undiscovered public knowl-
edge. 30(1):7–18.

[220] Don R Swanson. Migraine and magnesium: eleven neglected connections.
31(4):526–557.

[221] Don R Swanson. Undiscovered public knowledge. 56(2):103–118.

[222] Don R Swanson and Neil R Smalheiser. Implicit text linkage between MEDLINE
records: using arrowsmith as an aid to scientific discovery. 48(1):48.

[223] Don R. Swanson and Neil R. Smalheiser. An interactive system for finding
complementary literatures: A stimulus to scientific discovery. 91(2):183–203.

[224] Justin Sybrandt and Ilya Safro. Heterogeneous bipartite graph embeddings.

[225] Justin Sybrandt, Michael Shtutman, and Ilya Safro. MOLIERE: Automatic
biomedical hypothesis generation system. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, pages 1633–1642. ACM.

[226] Justin Sybrandt, Micheal Shtutman, and Ilya Safro. Large-scale validation of
hypothesis generation systems via candidate ranking. In 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pages 1494–1503, 2018.

[227] Shaheen Syed and Marco Spruit. Full-text or abstract? examining topic co-
herence scores using latent dirichlet allocation. In The 4th IEEE International
Conference on Data Science and Advanced Analytics, pages 165–174. IEEE.

[228] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
Line: Large-scale information network embedding. In Proceedings of the 24th
International Conference on World Wide Web, pages 1067–1077. International
World Wide Web Conferences Steering Committee, 2015.

[229] Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri. Community evolution
in dynamic multi-mode networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 677–
685. ACM, 2008.

276

[230] Aleksandar Trifunovic. Parallel algorithms for hypergraph partitioning. PhD
thesis, University of London, 2006.

[231] Aleksandar Trifunović and William J Knottenbelt. Parallel multilevel algo-
rithms for hypergraph partitioning. Journal of Parallel and Distributed Com-
puting, 68(5):563–581, 2008.

[232] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.
Verse: Versatile graph embeddings from similarity measures. In Proceedings of
the 2018 World Wide Web Conference, pages 539–548, 2018.

[233] Richard Van Noorden. Global scientific output doubles every nine years.

[234] Marise R Heerma van Voss, Willemijne AME Schrijver, Natalie D ter Hoeve,
Laurien D Hoefnagel, Quirine F Manson, Elsken van der Wall, Venu Raman,
Paul J van Diest, Dutch Distant Breast Cancer Metastases Consortium, and
others. The prognostic effect of DDX3 upregulation in distant breast cancer
metastases. pages 1–8.

[235] Brendan Vastenhouw and Rob H Bisseling. A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. SIAM review, 47(1):67–
95, 2005.

[236] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[237] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 4566–4575, 2015.

[238] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning, pages
1096–1103. ACM, 2008.

[239] Jessica B Voytek and Bradley Voytek. Automated cognome construction and
semi-automated hypothesis generation. 208(1):92–100.

[240] Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert
as a markov random field language model. arXiv preprint arXiv:1902.04094,
2019.

[241] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for
natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

277

[242] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embed-
ding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1225–1234, 2016.

[243] Huijun Wang, Ying Ding, Jie Tang, Xiao Dong, Bing He, Judy Qiu, and David J
Wild. Finding complex biological relationships in recent PubMed articles using
bio-LDA. 6(3):e17243.

[244] Peng Wang, Bo Xu, Jiaming Xu, Guanhua Tian, Cheng-Lin Liu, and Hongwei
Hao. Semantic expansion using word embedding clustering and convolutional
neural network for improving short text classification. 174:806 – 814.

[245] Marc Weeber, Henny Klein, Alan R Aronson, James G Mork, LT De Jong-van
Den Berg, and Rein Vos. Text-based discovery in biomedicine: the architecture
of the dad-system. In Proceedings of the AMIA Symposium, page 903. American
Medical Informatics Association, 2000.

[246] Marc Weeber, Henny Klein, Lolkje de Jong-van den Berg, Rein Vos, and oth-
ers. Using concepts in literature-based discovery: Simulating swanson’s ray-
naud–fish oil and migraine–magnesium discoveries. 52(7):548–557.

[247] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big data, 3(1):9, 2016.

[248] David Westergaard, Hans-Henrik Stærfeldt, Christian Tønsberg, Lars Juhl
Jensen, and Søren Brunak. A comprehensive and quantitative comparison of
text-mining in 15 million full-text articles versus their corresponding abstracts.
14(2):e1005962.

[249] Stephen Wilson, Angela Dawn Wilkins, Matthew V Holt, Byung Kwon Choi,
Daniel Konecki, Chih-Hsu Lin, Amanda Koire, Yue Chen, Seon-Young Kim,
Yi Wang, et al. Automated literature mining and hypothesis generation through
a network of medical subject headings. BioRxiv, page 403667, 2018.

[250] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[251] Jonathan D Wren, Raffi Bekeredjian, Jelena A Stewart, Ralph V Shohet, and
Harold R Garner. Knowledge discovery by automated identification and ranking
of implicit relationships. 20(3):389–398.

[252] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

278

[253] Meliha Yetisgen-Yildiz and Wanda Pratt. Evaluation of literature-based dis-
covery systems. In Literature-based discovery, pages 101–113. Springer.

[254] Muhammed A Yıldırım, Kwang-Il Goh, Michael E Cusick, Albert-László
Barabási, and Marc Vidal. Drug—target network. Nature biotechnology,
25(10):1119, 2007.

[255] Daniel GR Yim and David M Virshup. Unwinding the wnt action of casein
kinase 1. 23(6):737.

[256] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image
captioning with semantic attention. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4651–4659, 2016.

[257] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh
Bhojanapalli, Xiaodan Song, James Demmel, and Cho-Jui Hsieh. Large batch
optimization for deep learning: Training bert in 76 minutes. arXiv preprint
arXiv:1904.00962, 1(5), 2019.

[258] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T-H. Hubert Chan.
Re-revisiting learning on hypergraphs: Confidence interval and subgradient
method. 70:4026–4034, 06–11 Aug 2017.

[259] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and TH Chan. Re-revisiting
learning on hypergraphs: confidence interval and subgradient method. In Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 4026–4034. JMLR. org, 2017.

[260] Zi-Ke Zhang and Chuang Liu. A hypergraph model of social tagging networks.
Journal of Statistical Mechanics: Theory and Experiment, 2010(10):P10005,
2010.

[261] Denny Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hyper-
graphs: Clustering, classification, and embedding. In Advances in neural infor-
mation processing systems, pages 1601–1608, 2007.

[262] XueZhong Zhou, Jörg Menche, Albert-László Barabási, and Amitabh Sharma.
Human symptoms–disease network. 5.

279

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Funding
	List of Tables
	List of Figures
	Introduction
	Research Objectives
	Contributions in Summary

	Background
	Latent Features
	Text Embedding
	Graph Embedding
	Automatic Hypothesis Generation

	 FOBE and HOBE: First- and High-Order Bipartite Embeddings
	Background and Motivation
	Methods and Technical Solutions
	Algorithmic Analysis
	Empirical Evaluation
	Significance and Impact
	Sensitivity Study
	Conclusions

	Partition Hypergraphs with Embeddings
	Introduction
	Notation and Preliminary Concepts
	Background and Related Work
	Embedding-Based Coarsening
	Experimental Design
	Results
	Conclusion

	Moliere: Automatic Biomedical Hypothesis Generation System
	Introduction
	Knowledge Network Construction
	Query Process
	Experiments
	Deployment Challenges
	Lessons Learned and Open Problems
	Conclusions
	Acknowledgments

	Large-Scale Validation of Hypothesis Generation Systems via Candidate Ranking
	Introduction
	Technical Background
	Validation Methodology
	New Ranking Methods for Topic Model Driven Hypotheses
	Results and Lessons Learned
	Case-Study: HAND and DDX3 Candidate Selection
	Related Work and Proposed Validation
	Deployment Challenges and Open Problems

	Are Abstracts Enough for Hypothesis Generation?
	Introduction
	Background: Literature-Based HG
	Methodology
	Results
	Tradeoffs
	Lessons Learned and Open Problems
	Deployment Challenges
	Conclusion

	AGATHA: Automatic Graph-mining And Transformer based Hypothesis generation Approach
	Introduction
	Background
	Data Preparation
	Ranking Plausible Connections
	Validation
	Results
	Lessons Learned and Open Problems
	Related Work
	Conclusions

	 CBAG: Conditional Biomedical Abstract Generation
	Introduction
	Background
	Multi-Conditional Language Model
	Data Preparation
	Results
	Related Work
	Future Challenges and Ethical Considerations
	Conclusions

	Appendices
	Hypergraph Partitioning Details
	Bibliography

