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ABSTRACT
Typical graph embeddings may not capture type-specific bipartite

graph features that arise in such areas as recommender systems,

data visualization, and drug discovery. Machine learning methods

utilized in these applications would be better served with special-

ized embedding techniques. We propose two embeddings for bipar-

tite graphs that decompose edges into sets of indirect relationships

between node neighborhoods. When sampling higher-order rela-

tionships, we reinforce similarities through algebraic distance on

graphs. We also introduce ensemble embeddings to combine both

into a “best of both worlds” embedding. The proposed methods are

evaluated on link prediction and recommendation tasks and com-

pared with other state-of-the-art embeddings. Our embeddings are

found to perform better on recommendation tasks and equally com-

petitive in link prediction. Although all considered embeddings are

beneficial in particular applications, we demonstrate that none of

those considered is clearly superior (in contrast to what is claimed

in many papers). Therefore, we discuss the trade offs among them,

noting that the methods proposed here are robust for applications

relying on same-typed comparisons.

Reproducibility: Our code, data sets, and results are all publicly

available online at: http://bit.ly/fobe_hobe_code
1
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1 INTRODUCTION
Graph embedding methods place nodes into a continuous vector

space in order to capture structural properties that enable machine

learning tasks [11]. While many have made significant progress em-

bedding general graphs [12, 23, 28, 29], we find that bipartite graphs

have received less study [10], and that the field is far from settled

on this interesting case. There exist a variety of special algorithmic

cases for bipartite graphs [3], which are utilized in applications

such as user-product or user-group recommender systems [24, 32],

hypergraph based load balancing and mapping [22], gene-disease

relationships [4], and drug-to-drug targets [31], to mention just a

few.

We define a simple, undirected, and unweighted bipartite graph

to be G = (V ,E) where V = {v1,v2, . . . ,vn+m } is composed of the

disjoint subsetsA = {α1, . . . ,αn } and B = {β1, . . . , βn } (V = A∪B).
Here, A and B represent the two halves of the network, and are

sometimes called “types.” We use vi to indicate any node in V , αi
for nodes inA, and βi for those in B. In a bipartite graph, edges only

occur across types, and E ⊆ {A × B} indicates those connections
within G. A single edge is notated as αiβj ∈ E, and because our

graph is undirected, αiβj = βjαi . The neighborhood of a node is

indicated by the function Γ(·). If αi ∈ A then Γ(αi ) = {βj |αiβj ∈ E},
and vice-versa for nodes in B. In order to sample an element from a

set, such as selecting a random αi from A with uniform probability,

we notate αi∼A.
The problem of graph embedding is to determine a representa-

tion of the nodes in G in a vector space of r dimensions such that

r << |V | and that a select node-similarity measure defined on V
is encoded by these vectors [29]. We notate this embedding as the

function ϵ(·) : V → Rr , that maps each node to an embedding.

We propose two methods for embedding bipartite graphs. These

methods fit embeddings by optimizing nodes of each type sepa-

rately, which we find can lead to higher quality type-specific latent

features. Our first method, First-Order Bipartite Embedding (FOBE),

samples for the existence of direct, and first-order similarities within

the bipartite structure. This approach maintains the separation of

types by reformulating edges in E into indirect same-typed obser-

vations. For instance, the connection αiβj ∈ E decomposes into a

set of observed pairs (αi ,αk∼Γ(βj )) and (βj , βk∼Γ(αi )).
Our second method, High-Order Bipartite Embedding (HOBE),

samples direct, first-, and second-order relationships, and weighs

samples using algebraic distance on bipartite graphs [6]. Again, we

represent sampled relationships between nodes of different types

by decomposing them into collections of same-typed relationships.

While this sampling approach is similar to FOBE, algebraic distance

http://bit.ly/fobe_hobe_code
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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allows us to improve embedding quality by accounting for broader

graph-wide trends. Algebraic distance on bipartite graphs has the

effect of capturing strong local similarities between nodes, and

reduces the effect of less meaningful relationships. This behavior

is beneficial in many applications, such as shopping, where two

users are likely more similar if they both purchase a niche hobby

product, andmay not be similar even if they both purchase a generic

cleaning product.

Because FOBE and HOBE each make different prior assumptions

about the relevance of bipartite relationships, we propose a method

for combining bipartite embeddings to get “best of both worlds”

performance. This ensemble approach learns a joint representation

from multiple pre-trained embeddings. The “direct” combination

method fits a non-linear transformation of the original embeddings

into a fixed-size hidden layer in accordance to sampled similarities.

The “auto-regularized” combination extends the direct method by

introducing a denoising-autoencoder layer in order to regulate the

learned joint embedding [30]. The architecture of both approaches

maintains a separation between nodes of different types, which

allows for type-specific embeddings, without the constraint of a

shared global structure. Evaluation of all proposed embeddings is

performed on link prediction reinforced with holdout experiments

and recommender system tasks.

Our contribution in summary: (1) We introduce First- and High-

Order Bipartite Embeddings that learn dense real-valued latent rep-

resentations of bipartite structure while retaining type-specific se-

mantic information. (2)We present the direct and the auto-regularized

methods to leverage multiple pre-trained graph embeddings. This

approach can produce a “best of both words” embedding. (3) We

discuss the strengths and weaknesses of our proposed methods

as they compare to a range of graph embedding techniques. We

identify certain graph properties that suit different graph types,

and report that none of the proposed embeddings is clearly supe-

rior. However, we find that applications wanting to make many

same-typed comparisons are often best suited by a type-sensitive

embedding.

All code, graphs, and results are publicly available online at:

http://bit.ly/fobe_hobe_code
2
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1.1 Background & Related Work
Low-rank embeddings project high-order data into a compressed

real-valued space, often for the purpose of facilitating machine

learning models. Key advances in text mining by Mikolov et al. [20]

leverage the skip-gram model to learn latent semantic features

of words from a corpus. Inspired by this approach, Perozzi et al.

demonstrate that for a similar method can capture latent structural

features of traditional graphs [23]. Their approach, Deepwalk, re-

duces the graph problem into a text problem by performing a large

number of random walks, and then applying the skip-gram model

treating each walk as a pseudo-sentence.

An alternative approach, LINE by Tang et al., models first- and

second-order node relationships explicitly [28]. Our proposed meth-

ods are certainly influenced by LINE’s approach, but differ in a few

2
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key areas. Firstly, we split our model in order to only make same-

typed comparisions. In addition, we introduce terms that compare

nodes with relevant neighborhoods, as described in Equation (7).

HOBE introduces additional differences byweightingwith algebraic

distances [6]. Node2Vec blends the intuitions behind both LINE

and Deepwalk by combining homophilic and structural similarities

through a biased random walk [12].

While the three previously listed embedding approaches are

designed for traditional graphs, Metapath2Vec++ by Dong et al.

presents a heterogeneous approach using extended skip-grammodel [8].

Specifically, this model projects each node into a shared hidden

layer, which is then projected to multiple type-specific outputs.

Our method differs from Dong et al.’s in a number of ways. Again,

we do not apply random walks or the skip-gram model. Further-

more, the Metapath2Vec++ model implicitly asserts that output

type-specific embeddings be a linear combination of the same hid-

den layer. In contrast, we create entirely separate embedding spaces

for the nodes of different types.

BiNE by Gao et al. focuses directly on the bipartite case [10]. This

approach uses the biased random-walks described in Node2Vec,

and samples these walks in proportion to each node’s HITS central-

ity [15]. While our methods differ, again, in the use of skip-gram,

BiNE also fundamentally differs from our proposed approaches by

enforcing global structure through cross-type similarities.

Tsitsulin et al. present VERSE, a versatile graph embedding

method that allows multiple different node-similarity measures

to be captured by the same overarching embedding technique [29].

This method requires that the user specify a node-similarity mea-

sure that will be encoded in the dot product of resulting embeddings.

This work reproduces a number of existing graph embedding meth-

ods, such as Deepwalk [23], LINE [28], and node2vec [12] in their

proposed formalism. The methods presented here could potentially

be adapted to the VERSE methodology as well, with minor mod-

ifications. A key difference between the methods presented here,

and the methods presented in VERSE, come from differences in

objective values when training embeddings. VERSE uses a range

of methods to sample node-pairs, from direct sampling to Noise

Contrastive Estimation [13], and updates embeddings according

to their observed similarity or dissimilarity (in the case of nega-

tive samples). However, the optimization method proposed here

enforces only same-typed comparisons, which we find can lead to

higher quality embeddings.

2 PROPOSED BIPARTITE GRAPH
EMBEDDINGS

We present two sibling strategies for learning bipartite embeddings.

First-Order Bipartite Embedding (FOBE) samples direct links from E
and first-order relationships between nodes sharing common neigh-

bors. We then fit embeddings to minimize the KL-Divergence be-

tween our observations and our embedding-based estimations. The

second method, High-Order Bipartite Embedding (HOBE), begins

by computing algebraic similarity estimates for each edge [6, 26].

Using these heuristic weights, HOBE samples direct, first- and

second-order relationships, to which we fit embeddings using

mean-squared error. We implement both methods in Python using

Keras [7] and Tensorflow [2].

http://bit.ly/fobe_hobe_code
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At a high level, both embedding methods begin by observing

structural relationships within a graph G and then fitting an em-

bedding ϵ in order to encode structural features via dot product of

embeddings. We combine three types of observations for a single

graph These observations are represented through the functions

SA(·, ·), SB (·, ·), and SV (·, ·). Each function maps two nodes to an

observed similarity value: V ×V → R. The resulting value of SA is

nonzero only if both arguments are in A, SB is similarly nonzero

only if both arguments are in B. In this manner, these functions

capture type-specific similarities. The SV function, in contrast, cap-

tures cross-typed observations, and is nonzero if its arguments are

of different types. We define a reciprocal set of functions to model

these distinct similarities: S̃A(·, ·), S̃B (·, ·), and S̃V (·, ·). These func-
tions are defined in terms of ϵ(·), and each method must select some

embedding such that the difference between each corresponding set

of S, S̃ pairs. However, the specifics of each observation, estimation,

and objective differs across methods.

Because we estimate similarities within type-specific subsets of

ϵ separately, we can better preserve typed latent features. This is

important for many applications. Consider an embedding of the

bipartite graph of viewers and movies, often used for applications

such as video recommendations. Within “movie space” one would

expect to uncover latent features such as genre, budget, or the

presence of high-profile actors. These features are undefined within

“viewer space,” wherein one would expect to observe latent features

corresponding to demographics and viewing preferences. Clearly

these two spaces are correlated in a number of ways, such as the

alignment between viewer tastes and movie genres. However, we

find methods that enforce direct comparisons between viewer and

movie embeddings can result in an erosion of type-specific features,

which can lead to lower downstream performance. In contrast,

the methods proposed here never make a direct assertion of cross-

type similarity, and allow implicit relationships to govern any key

correlations across spaces.

2.1 First-Order Bipartite Embedding
The goal of FOBE is to model direct and first-order relationships

from the original structure. Here, a direct relationship is any edge

from the original bipartite graph, while a first-order relationship

is defined as {(αi ,α j ) | Γ(αi ) ∩ Γ(α j ) , ∅}. Note that nodes in a

first-order relationship share the same type. We define observations

corresponding with each relationship. Direct observations simply

detect the presence of an edge, while first-order relationships simi-

larly detect a common neighbor. Formally:

SA(αi ,α j ) =

{
1 αi ,α j ∈ A & Γ(αi ) ∩ Γ(α j ) , ∅

0 otherwise

(1)

SB (βi , βj ) =

{
1 βi , βj ∈ B & Γ(βi ) ∩ Γ(βj ) , ∅

0 otherwise

(2)

SV (αi , βj ) =

{
1 αiβj ∈ E

0 otherwise

(3)

By sampling γ neighbors, we allow our later embedding model

to approximate the effects of Γ, similar to the k-ary set sampling

in [21]. Note also that each sample contains one nonzero S value. By

fitting all three observations simultaneously, we implicitly generate

two negative samples for each positive sample. Furthermore, we

generate a fixed number of samples for each node’s direct and

first-order relationships.

Given these observations SA, SB , and SV , we fit the ϵ embedding

according to corresponding estimation functions S̃A, S̃B , S̃V . To

estimate a first-order relationship (̃SA and S̃B ) we calculate the

sigmoid of the dot product of embeddings (5), namely,

σ (x) =
1

1 + e−x
. (4)

S̃A(αi ,α j ) = σ
(
ϵ(αi )

⊺ϵ(α j )
)

(5)

S̃B (βi , βj ) = σ
(
ϵ(βi )

⊺ϵ(βj )
)

(6)

Building from this, we train embeddings based on direct relation-

ships by composing relevant first-order relationships. Specifically,

if αiβj ∈ E then we would expect αi to be similar to αk ∈ Γ(βj ) and
vice-versa. Intuitively, a viewer has a higher chance of watching

a movie if they are similar to others that have. We formulate our

direct relationship estimate to be the product of each node’s average

first-order estimate to the other’s neighborhood. Formally:

S̃V (αi , βj ) = E
αk ∈Γ(βj )

[
S̃A(αi ,αk )

]
E

βk ∈Γ(αi )

[
S̃B (βj , βk )

]
(7)

In order to train our embedding function ϵ for the FOBE method,

we minimize the KL-Divergence [16] between our observed simi-

larities S and our estimated similarities S̃. We minimize for each

simultaneously, for both direct and first-order similarities, using

the Adagrad optimizer [9], namely, we solve:

min

ϵ

∑
vi ,vj ∈V×V



S̃A(vi ,vj ) log

(
SA(vi ,vj )

S̃A(vi ,vj )

)
+S̃B (vi ,vj ) log

(
SB (vi ,vj )

S̃B (vi ,vj )

)
+S̃V (vi ,vj ) log

(
SV (vi ,vj )

S̃V (vi ,vj )

)


(8)

2.2 High-Order Bipartite Embedding
The goal of HOBE is to capture distant relationships between nodes

that are related, but may not share an edge or a neighborhood.

In order to differentiate the meaningful distant connections from

those that are spurious, we turn to algebraic distance on graphs [26].

This method is fast to calculate and provides a strong signal for

local similarity. For example, algebraic distance can tell us which

neighbor of a high-degree node is the most similar to the root. As

a result, we can utilize this signal to estimate which multi-hop

connections are the most important to preserve in our embedding.

Algebraic distance is a measure of dependence between vari-

ables popularized in algebraic multigrid (AMG) [5, 19, 25]. Later, it

has been shown to be a reliable and fast way to capture implicit

similarities between nodes in graphs [14, 18] and hypergraphs

that are represented as bipartite graphs [26] (which is leveraged
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in this paper) taking into account distant neighborhoods. Techni-

cally, it is a process of relaxing randomly initialized test vectors

using stationary iterative relaxation applied on graph Laplacian

homogeneous system of equations, where in the end the algebraic

distance between system’s variables xi and x j (that correspond to

linear system’s rows i and j) is defined as an maximum absolute

value between the ith and jth components of the test vectors (or,

depending on application, as sum or sum of squares of them).

In our context, a variable is a node, and we apply K iterations

of Jacobi over-relaxation (JOR) on the bipartite graph Laplacian

as in [25] (K = 20 typically ensures good stabilization as we do

not need full convergence, see Theorem 4.2 [6]). Initially, each

node’s coordinate is assigned a random value, but on each iteration

a node’s coordinate is updated to move it closer its neighbors’

average. Weights corresponding to each neighbor are inversely

proportional their degree in order to increase the “pull” of small

communities. Intuitively, this acknowledges that two viewers who

both watch a niche new-wave movie are more likely similar than

two viewers who watched a popular blockbuster. We run JOR on R
independent trials (called test vectors in AMG works, convergence

proven in [6]). Formally, for r th test vector ar the update step of

JOR is performed as follows, where a
(t )
r (vi ) represents node vi ’s

algebraic coordinate on iteration t ∈ {1, ..,K}, and λ is a damping

factor (suggested λ = 0.5 in [26]).

a(t+1)r (vi ) = λa(t )r (vi ) + (1 − λ)

∑
vj ∈Γ(vi ) a

(t )
r (vj )|Γ(vj )|

−1∑
vj ∈Γ(vi ) |Γ(vj )|

−1
(9)

We use the l2-norm in order to summarize the algebraic distance

of two nodes across R trails with different random initializations.

As a result, two nodes will be close in our distance calculation if

they remain nearby across many trials, which lessens the effect of

too slow convergence in a single trial. For our purposes we select

R = 10. Additionally, we define “algebraic similarity”, s(i, j), as
a closeness across trials. We subtract the distance between two

embeddings from the maximum distance in our space, and rescale

the result to the unit interval. Because we know that the maximum

distance between any two coordinates in the same trial is 1, we can

compute this in constant time:

d(vi ,vj ) =

√√√ R∑
r=1

(
a(K )
r (vi ) − a(K )

r (vj )
)
2

(10)

s(vi ,vj ) =

√
T − d(vi ,vj )

√
T

(11)

After calculating algebraic similarities for pairs of nodes of all

edges, we begin to sample direct, first-order, and second-order

similarities from the bipartite structure. Here, a second-order con-

nection is one wherein αi and βj share a neighbor that shares a
neighbor: αi ∈ Γ(Γ(Γ(βj ))). Note that the set of second-order rela-
tionships is a superset of the direct relationships. We can extend to

these higher-order connections with HOBE, as opposed to FOBE,

because of the information provided in algebraic distances. Many

graphs contain a small number of high degree nodes, which creates

a very dense second-order graph. Algebraic distances are therefore

needed to distinguish which of the sampled second-order connec-

tions are meaningful, especially when the refinement is normalized

by |Γ(vi )|
−1
.

We formulate our first-order observations to be equal to the

strongest shared bridge between two nodes. This indicates that

both nodes are closely related to something that is mutually rep-

resentative, such as two viewers that watch new-wave cinema.

Formally:

S
′

A(αi ,α j ) =


max

βk ∈Γ(αi )∩Γ(α j )
min

(
s(αi , βk ), s(α j , βk )

)
αi ,α j ∈ A

0 otherwise

(12)

S
′

B (βi , βj ) =


max

αk ∈Γ(βi )∩Γ(βj )
min

(
s(αk , βi ), s(αk , βj )

)
βi , βj ∈ B

0 otherwise

(13)

When observing second-order relationships between nodes αi
and βj if different types, we again construct a measurement from

shared first-order relationships. Specifically, we are looking for the

strongest first-order connection between i and j’s neighborhood,
and vice-versa. In the context of viewers and movies this represents

the similarity between a viewer and a movie watched by a friend.

Formally:

S
′

V (αi , βj ) = max

(
max

αk ∈Γ(βj )
S
′

A(αi ,αk ), max

βk ∈Γ(αi )
S
′

B (βj , βk )

)
(14)

We again collect a fixed number of samples for each relationship

type: direct, first- and second-order. We then train embeddings

using cosine similarities, however we select the ReLU activation

function to replace sigmoid in order to capture the weighted rela-

tionships. We optimize for all three observations simultaneously,

which again has the effect of creating negative samples for non-

observed phenomena. Our estimated similarities are defined as

follows:

S̃
′

A(αi ,α j ) = max

(
0, ϵ(αi )

⊺ϵ(α j )
)

(15)

S̃
′

B (βi , βj ) = max

(
0, ϵ(βi )

⊺ϵ(βj )
)

(16)

S̃
′

B (αi , βj ) = E
αk ∈Γ(βj )

[
S̃
′

A(αi ,αk )
]
E

βk ∈Γ(αi )

[
S̃
′

B (βj , βk )
]

(17)

We use the same model as FOBE to train HOBE, but with our

new estimation functions and a new objective. We now optimize

for the mean-squared error between our observed and estimated

samples, as KL-Divergence is ill-defined for the weighted samples

we collect. Formally, we minimize

min

ϵ
E

vi ,vj ∈V×V


(S

′

A(vi ,vj ) − S̃
′

A(vi ,vj ))
2

+(S
′

B (vi ,vj ) − S̃
′

B (vi ,vj ))
2

+(S
′

V (vi ,vj ) − S̃
′

V (vi ,vj ))
2

 (18)
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Procedure 1 Sampling for FOBE and HOBE. Note that when a

single sample is recorded, unobserved values are recorded as either

zero or empty.

1: function SameTypeSample(vi , sr ,S)
2: vj∼Γ(Γ(vi ))
3: Record vi ,vj , and S(vi ,vj )

4: function DiffTypeSample(vi , sr , sγ ,G,S)
5: vj∼G(vi )
6: Let γα and γβ be sets of size sγ sampled with replacement

from the neighborhoods Γ(vi ) and Γ(vj ) according to the types
of vi and vj .

7: Record vi ,vj ,γα ,γβ , and S(vi ,vj ).

8: function FobeSampling(G, sr , sγ )
9: for all vi ∈ V do
10: for sr samples do
11: SameTypeSample(vi , sr ,SA)
12: SameTypeSample(vi , sr ,SB )
13: DiffTypeSample(vi , sr , sγ , Γ(·),SV )

14: function HobeSampling(G, sr , sγ )
15: for all vi ∈ V do
16: for sr samples do
17: SameTypeSample(vi , sr ,S

′
A)

18: SameTypeSample(vi , sr ,S
′
B )

19: DiffTypeSample(vi , sr , sγ , Γ(Γ(Γ(·))),S
′
V )

2.3 Algorithmic Analysis
In order to efficiently compute FOBE and HOBE, we collect a fixed

number of samples per node for each of the observation functions,

S. As later explored in Table 5, we find that the performance of

our proposed methods does not significantly increase beyond a

relatively small, fixed sampling rate sr , where sr << |V |. Using

this observation, we can efficiently minimize the FOBE and HOBE

objective values by approximating the expensive O(n2) set of com-

parisons (vi ,vj ∈ V ×V ) with a linear number of samples (specif-

ically O(|V |sr )). Furthermore, we can estimate the effect of each

node’s neighborhood in observations SV and S′V by following a sim-

ilar approach. Instead of considering each node’s total O(V )-sized

neighborhood, we can randomly sample sγ neighboring nodes with

replacement. These specifically samples nodes are recorded dur-

ing the sampling procedure so that they may be referenced during

training. Algorithm 1 describes the sampling algorithm formally.

2.4 Combination Bipartite Embedding
FOBE captures local relationships, while HOBE focuses on higher-

order relationships. In order to unify our proposed approaches, we

present a method to create a joint embedding from multiple pre-

trained bipartite embeddings. This combination method maintains

our initial assertion that nodes of different types ought to participate

in different global embedding structures.

We fit a non-linear projection of the input embeddings such that

an intermediate embedding can accurately uncover direct relation-

ships. This raises a question as to whether it is better to create

an intermediate that succeeds in this training task, or whether

it is better to fully encode the input embeddings. To address this

concern we propose two flavors of our combination method: the “di-

rect” approach maximizes performance on the training task, while

the “auto-regularized” approach enforces a full encoding of input

embeddings.

The sampling process for both combination approaches is identi-

cal. We begin by taking the edge list of the original bipartite graph

E as our set of positive samples. We then generate five negative

samples for each node by selecting random pairs αiβj < E. For each
sample, we create an input vector by concatenating each of the e ′

pre-trained embeddings.

In(vi ) = [ϵ1(vi ) ϵ2(vi ) ... ϵe ′(vi )] (19)

After generating In(αi ) and In(βj ), our model asserts 50%

dropout in these input vectors [27].We do so in the auto-regularized

case so that we follow the pattern of denoising auto-encoders,

which have shown high performance in robust dimensionality re-

ductions [30]. However, we also find that this dropout increases

performance in the direct combination model as well. This is be-

cause in either case, we anticipate both redundant and noisy signals

to be present across the concatenated embeddings. By adding this

dropout factor, we reduce the chance that our combination model

will learn to predict edges based on small perturbations between

these signals. This is especially necessary for larger values of k and

e ′, where the risk of overfitting increases.

We then project In(αi ) and In(βj ) separately onto two hidden

layers of size d (In)+k
′
/2 where d(·) indicates the dimensionality

of the input, and k
′

represents the desired dimensionality of the

combined embeddings. By separating these hidden layers, we only

allow signals from within embeddings of the same node to affect

its combination. We then project down to two combination embed-

dings of size k
′

, which act as input to both the joint link-prediction

model, as well as to the optional auto-encoder layers.

In the direct case, we simply minimize the mean-squared error

between the predicted links and the observed links. Formally, let

S
′′

(αi , βj ) → {0, 1} equal the sampled value, and let S̃
′′

(αi , βj ) → R
be combination estimate. In the auto-regularized case we introduce

a factor to enforce that the original (pre-dropout) embeddings can

be recovered from the combined embedding. We weight these fac-

tors so they are half as important as performing the link prediction

training task. The neural architecture used to learn these combi-

nation embeddings is depicted in Figure 1. If Θ is the set of free

parameters of our neural network model, N is the set of negative

samples, andOut(vi ) is the output of the auto-encoder correspond-
ing to In(vi ), then we optimize the following (direct followed by

auto-regularized):

min

Θ
E

αi ,βj ∈(E+N )

(
S
′′

(αi , βj ) − S̃
′′

(αi , βj )
)
2

(20)

min

Θ
E

αi ,βj ∈(E+N )

©«
4

(
S
′′

(αi , βj ) − S̃
′′

(αi , βj )
)
2

+| |In(αi ) −Out(αi )| |2

+| |In(βj ) −Out(βj )| |2

ª®®®¬ (21)
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Figure 1: CombinationNeural NetworkModels. Boxes corre-
spond to dense neural network layers, each depicts its activa-
tion function. Grey layers only used for the auto-regularized
case.

Γ(αi ) Γ(βj )
Graph |A |/|B | md max md max SR LCP

Amazon 16,716/5,000 3 49 8 328 75.8 1.6

DBLP 93,432/5,000 1 12 8 7,556 174.7 81.7

Friendster 220,015/5,000 1 26 133 1,612 80.3 58.3

Livejournal 84,438/5,000 1 20 16 1,441 100.9 27.0

MadGrades 11,951/6,462 3 39 4 393 57.3 99.7

YouTube 39,841/5,000 1 54 4 2,217 113.3 80.6

Table 1: Graph Summary. We report the median (md) and
max degree for each node set, as well as the Spectral Radius
(SR) and the percentage of the largest connected component
(LCP).

3 LINK PREDICTION EXPERIMENTS
We evaluate the performance of our proposed embeddings across

three link prediction tasks and a range of training-test splits. When

removing edges, we visit each in random order and remove them

with probability h provided the removal does not disconnect the

graph. This additional check ensures all nodes appear in all ex-

perimental embeddings. The result is the subgraphG ′ = (V ,E ′,h).
Deleted edges form the positive test-set examples, and we gener-

ate set of negative samples (edges not present in original graph)

of equal size. These samples are used to train three sets of link-

prediction models: the A-Personalized, B-Personalized (where A
and B are parts of V ), and unified models.

The A-personalized model is a support vector machine trained

on the neighborhood of a particular node. A model personalized

to i ∈ A learns to identify a region in B-space corresponding to

its neighborhood in G ′
. We use support vector machines with the

radial basis kernel (C = 1,γ = 0.1) because we find these models

result in robust performance given limited training data, and be-

cause the chosen kernel function allows for non-spherical decision

boundaries. We additionally generate five negative samples for each

positive sample (a neighbor of i in G ′
). In doing so we evaluate the

ability to capture type-specific latent features, as each personalized

model only considers one-type’s embeddings.

While the personalized task may not be typical for production

link-prediction systems, it is an importantmeasure of latent features

found in each space. In many bipartite applications, such as the

six we have selected for evaluation, |A| and |B | may be drastically

different. For instance, there are typically more viewers thanmovies,

or more buyers than products. Therefore it becomes important to

understand the differences in quality between the latent spaces of

each type, which we evaluate through these personalized models.

The unified link-prediction model, in contrast, learns to asso-

ciate αiβj ∈ E ′ with a combination of ϵ(αi ) and ϵ(βj ). This model

attempts to quantify global trends across embedding spaces. We use

a hidden layer of size k with the ReLU activation function, and a

single output with the sigmoid activation. We fit this model against

mean-squared error using the Adagrad optimizer [9].

Datasets. We evaluate each embedding across six datasets de-

tailed in Table 1. The Amazon, YouTube, DBLP, Friendster, and

Livejournal graphs are all taken from the Stanford Large Network

Dataset Collection (SNAP) [17]. We select the distribution of each

under the listing “Networks with Ground-Truth Communities.”

Therefore, our bipartite graph consists of users and communities.

Furthermore, we collect the MadGrades graph, from an online

source provided by the University of Wisconsin at Madison [1].

This graph consists of teachers and course codes, wherein an edge

signifies that teacher αi has taught course code βj at some point.

We clean this dataset by iteratively deleting any instructor or course

with degree 1 until none remain.

Experimental Parameters. We evaluate the performance of

our proposed methods: FOBE and HOBE, as well as our two com-

bination approaches: Direct and Auto-Regularized Combination

Bipartite Embedding. We compare against all methods described in

Section 1.1. We evaluate each across the six above graphs and nine

training-test splits h = 0.1, 0.2, ..., 0.9. Furthermore, we report the

performance of A-Personalized, B-Personalized, and unified link

prediction models. For all embeddings we select dimensionality

k = 100. For Deepwalk, we select a walk length of 10, a window

size of 5, and 100 walks per node. For LINE we apply the model

that combines both first- and second-order relationships, selecting

10,000 samples total and 5 negative samples per node. For Node2Vec

we select 10 walks per node, walk length of 7 and a window size of

3. Furthermore, we select typical parameters for BiNE and Meta-

path2Vec++. For the latter, we supply the metapath of alternating

A− B −A nodes, the only metapath in our bipartite case. For FOBE

and HOBE we generate 200 samples per node, and when sampling

neighborhoods we select 5 nodes with replacement upon each

observation. After training both methods, we fit the Direct and

Auto-Regularized Combination methods, each trained using only
the results of FOBE and HOBE.

Sensitivity Study.We select the MadGrades network to demon-

strate how our proposed methods are effected by the sampling rate.

We run ten trials for each experimental sampling rate, consisting

of powers of 2 from 1 to 1024. Each trial represents an independent

50% holdout experiment. We present min, mean, and max observed

link prediction accuracy.
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4 RECOMMENDATION EXPERIMENTS
We follow the procedure originally described by Gao et al. and

evaluate our proposed embeddings through the task of recommen-

dation [10]. Recommendation systems propose products to users

in order to maximize the overall interaction rate. These systems

fit the bipartite graph model because they are defined on the set

of user-product interactions. While there are many similarities be-

tween recommendation and link prediction, the key difference is

the introduction of weighted connections. As a result, recommen-

dation systems are evaluated based on their ability to rank products

in accordance to held-out user supplied rankings. This is quantified

through a number of metrics defined on the top k system-supplied

recommendation for each user. When using embeddings to make

a comparison, Gao et al. rank products by their embedding’s dot

product with a given user. However, our proposed methods relax

the constraint that products and users be directly comparable. As a

result, when ranking products for a particular user for our proposed

embeddings we must first define a product-space representation.

For each user we collect the set of known product ratings, and

calculate a product centroid weighted by those ratings.

Experimental Procedure.We present a comparison between

our proposed methods and all previously discussed embeddings

across the DBLP
3
and LastFM

4
datasets. Note that this distribution

of DBLP is the bipartite graph of authors and venues, and is differ-

ent from the community-based version distributed by SNAP. The

LastFM dataset consists of listeners and musicians, where an edge

indicates listen count, which we log-scale to improve convergence

for all methods. We start by splitting each rating set into training-

and test-sets with a 40% holdout. In the case of DBLP we use the

same split as Gao et al. We use embeddings from the training bipar-

tite graph to perform link prediction. We then compare the ranked

list of training-set recommendations for each user, truncated to 10

items, to the test-set rankings. We calculate 128-dimensional em-

beddings for each method, and report F1, Normalized Discounted

Cumulative Gain (NDCG), Mean Average Precision (MAP) and

Mean Reciprocal Rate (MRR).

5 RESULTS AND DISCUSSION
In contrast to what is typically claimed in papers, we observe that

the link prediction data (Table 2) demonstrates that different graphs

lead to very different performance results for the existing state-

of-the-art and proposed embeddings. Moreover, their behavior

is changed with different holdouts when the size of training set

is smaller. For instance, our methods are above the state of the

art in the Youtube and MadGrades graphs, but Metapath2Vec++,

Node2Vec, and LINE each have scenarios wherein they outperform

the field. Additionally, while there are scenarios where the combi-

nation methods perform as expected, such as in the Youtube, Mad-

Grades, and DBLP B-Personalized cases, we observe that variability
in the other proposed embeddings can disrupt this performance

gain. Looking to the sensitivity study (Tables 5), we see the vari-

ability of HOBE is significantly larger for small sampling rates.

However, we do observe that after approximately 32 samples per

3
https://github.com/clhchtcjj/BiNE/tree/master/data/dblp

4
https://grouplens.org/datasets/hetrec-2011/
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Table 2: Link Predicction Accuracy vs. Training-Test Ratio.
Methods represented by dashed lines indicate the state-of-
the-art, while solid lines indicate methods presented in this
work.

node, in the case of MadGrades, this effect is reduced. Still, con-

sidering FOBE does not exhibit this same quality, it is likely the

variability of the algebraic similarity measure that ultimately leads

to otherwise unexpected reductions in HOBES performance.

When comparing the A- and B-Personalized results, its is impor-

tant to keep in mind that for all considered graphs there are more

A nodes (|A| > |B |), and therefore these nodes tend to have fewer

neighbors (E[Γ(α)] < E[Γ(β)]). This is demonstrated in Table 1. For

this reason, we find that different embedding methods can exhibit

significantly different behavior across both personalized tasks. In-

tuitively, performing well on the A-Personalized set indicates an

https://github.com/clhchtcjj/BiNE/tree/master/data/dblp
https://grouplens.org/datasets/hetrec-2011/
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Metric@10: F1 NDCG MAP MRR

DeepWalk .0850 .2414 .1971 .3153

LINE .0899 .1441 .0962 .1713

Node2Vec .0854 .2389 .1944 .3111

MP2V++ .0865 .2514 .1906 .3197

BINE .1137 .2619 .2047 .3336

FOBE .1108 .3771 .2382 .4491

HOBE .1003 .4054 .3156 .6276
D.Comb. .0753 .2973 .2362 .5996

A.R.Comb. .0667 .2359 .1730 .5080

Table 3: DBLPRecommendation. Note: result numbers from
prior works are reproduced from [10].

Metric@10: F1 NDCG MAP MRR

DeepWalk .0027 .0153 .0069 .1844

LINE .0067 .0435 .0229 .2477

Node2Vec .0279 .1261 .0645 .2047

MP2V++ .0024 .0153 .0088 .2677

BINE .0227 .1551 .0982 .3539

FOBE .0729 .3085 .1997 .3778

HOBE .0195 .1352 .0789 .3400

D.Comb. .0243 .1285 .0795 .3520

A.R.Comb. .0388 .1927 .1249 .3915
Table 4: LastFM Recommendations.

ability to extrapolate connections between elements with signif-

icantly more sparse attachments, such as selecting a new movie

given a viewer’s limited history. In contrast, performance on the

B-Personalized set indicates an ability to uncover trends among rela-

tively larger sets of connections, such as determining what patterns

are common across all the viewers of a particular movie.While these

two tasks are certainly related, we observe that the B-Personalized
evaluation appears to be significantly more challenging for a num-

ber of embedding methods, such as Node2Vec on Lovejournal and

YouTube. In contrast, HOBE succeeds in this evaluation for both

cases, as well as Friendster and MadGrades. Metapath2Vec++ addi-

tionally is superior on LiveJournal and Friendster, but falls behind

on DBLP, MadGrades, and Youtube.

In the recommendation results (Table 3 and 4), our methods

clearly improve the state-of-the art across multiple metrics. This

is further evidence that our sampling decompositions are better

able to capture product-specific features. Specifically, our biggest

increase is in MRR for DBLP, which indicates that the first few

suggestions from our embeddings are often more relevant. This

is best seen with HOBE, demonstrating the ability for algebraic

distance to estimate useful local similarity measures. While we

note some improvement in the LastFM dataset, the effect is not as

significant, and FOBE outperforms HOBE. One reason for this is

that LastFM contains significantly more artists-to-user than DBLP

contains venues-to-author. As a result the amount of information

present when estimating algebraic similarities is different across

datasets, and insufficient to boost HOBE above FOBE.

– Max – Mean – Min

Per-A Per-B Unified

F
O
B
E

H
O
B
E

Table 5: Link Prediction Accuracy vs. Sampling Rate. De-
picts the effect of increasing sr from 2 to 1024 on the Mad-
Grades dataset, running 10-trials of the 50% holdout experi-
ment per value of sr .

When looking at both link prediction and recommendation tasks,

we observe a highly variable performance of the combination meth-

ods. In some cases, such as the MadGrades and YouTube link pre-

diction tasks, as well as the LastFM recommendation task, these

combinations are capable of learning a joint representation from

FOBE and HOBE that can improve overall performance. However,

in other cases, such as the Amazon link prediction task, the combi-

nation method appears to have significantly decreased performance.

This effect is due to the increased number of hyperparameters intro-

duced by the combination approach, which are determined not by

the complexity of a given dataset, but are instead determined by the

number and size of input embeddings. In the Amazon dataset, these

free parameters lead to overfitting the combination embeddings.

To continue comparing FOBE and HOBE, it would appear that

higher-order sampling is often able to produce better results, but

that the algebraic distance heuristic introduces added variability

that occasionally reduces overall performance. In some applications

it would appear that this variability is manageable, as seen in our

DBLP recommendation results. However in the case of link predic-

tion on Amazon communities, this caused an unintentional drop

when FOBE remained more consistent. Overall, FOBE and HOBE

are fast methods that broaden the array of embedding techniques

available for bipartite graphs. While no method is clearly superior

in every case, there exist a range of graphs and applications that

are better suited by these methods.

6 CONCLUSIONS
In this work we present FOBE and HOBE, two strategies for model-

ing bipartite networks that are designed to capture type-specific

structural properties. FOBE, which captures first-order relation-

ships, samples nodes in small local neighborhoods. HOBE, in con-

trast, captures higher-order relationships that are prioritized by

a heuristic signal provided by algebraic distance on graphs. In

addition we present two variants on an approach to learn joint

representations that are designed to identify a “best of both worlds”

embedding. We evaluate these methods against the state-of-the-art

via a set of link prediction and recommendation tasks.
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Our results indicate that none of the considered embeddings

are clearly superior in every downstream embedding task. This re-

sult is significant as practitioners often rely on a single embedding

technique, and reuse embeddings across a wide range of tasks. In

Table 2 we identify methods such as Deepwalk [23] may have sig-

nificantly reduced performance on important sub-tasks, such as the

B-Personalized task in our case, even if their overall performance is

still strong. While the FOBE and HOBE methods are not a cure-all

for embedding tasks, we do observe that they are consistently ca-

pable of capturing both A- and B-specific features for applications
that rely on many same-typed comparisons. These methods are

fast, easily parallizable, and capable of exceeding state-of-the-art

performance on a range of downstream embedding tasks. While

the bipartite graph embeddings remain an understudied problem,

FOBE and HOBE can provide higher-quality type-specific latent

features.
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