
A Survey of Text Mining

How to solve complex problems with text







While not normally known for his musical 
talent, Elon Musk is releasing a debut album. 
The "Elon Musk" is a collection of eight new 
songs which are inspired by the founder's life. 
The music, which is available for pre-order on 
iTunes, was created by one-man-band and 
fellow Tesla Motors and SpaceX executive, 
Paul Kasmin, who's known for playing guitar at 
Tesla events. The album is a collaboration 
between Kasmin and Musk himself, although 
it's also being marketed under the Tesla brand.



Example: Quantify Survey Results

Note: These are not real examples from our dataset. 

I believe the training classes 
led to a valuable benefit to my 
work life.

I liked the training so much 
that I decided to try out what I 
learned on a personal project.

I thought the training was a 
huge waste of my time.

I think the training is leading us 
down the wrong path, and I 
reported this to my manager.
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Typical Regression

Example: Boston housing dataset



Challenge: Numeric Features from Text

Convert "plain text" written by humans

into vectors understandable by computers

I liked the training so much 
that I decided to try out what I 
learned on a personal project.
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Bag of Words (BOW)

Split words by spaces

Create a vector of word counts

I liked the training so much 
that I decided to try out what I 
learned on a personal project.
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... ...



BOW Vector Properties

Vectors are sparse

Size of vocab = size of vector
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BOW Issues

Frequent words dominate the representation

Word order removed

Similar words become totally different features
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Working with BOW Vectors

Use cosine similarity to relate different texts

Documents have a similarity between 0 and 1

(if A and B are nonnegative)



Cosine Similarity Example

I didn't like the training I 1

didn't 1

like 1

the 1

training 1

I liked the training a lotI 1

liked 1

the 1

training 1

a 1

lot 1



Text A B Ai*Bi

I 1 1 1

like 1 0 0

liked 0 1 0

the 1 1 1

training 1 1 1

a 0 1 0

lot 0 1 0

didn't 1 0 0

√5 √6 3

similarity(A, B) 

= 3 / ( √5 * √6 )  

≈ 0.5477



Text A B Ai*Bi

I 1 1 1

like 1 0 0

liked 0 1 0

the 1 1 1

training 1 1 1

a 0 1 0

lot 0 1 0

didn't 1 0 0

√5 √6 3

similarity(A, B) 

= 3 / ( √5 * √6 )  

≈ 0.5477

Issue:
Most similar words aren't relevant.



Stopwords

Words that we know aren't relevant

Often we can just remove these



Term Frequency Inverse Document Frequency
(TF-IDF)

Prioritize rare words

Demote common words
The man saw the 
thief escapingThe man saw the 

thief escapingThe man saw the 
thief escapingThe man saw the 

thief escaping Term Frequency:
# occurrences within a document

Document Frequency:
# docs containing the word



The

Let t be a term



The man saw the 
thief escaping

The 2

man 1

saw 1

thief 1

escaping 1

Let t be a term, d be a document



The man saw the 
thief escaping

The 2

man 1

saw 1

thief 1

escaping 1

The 100

man 75

saw 10

thief 5

escaping 3

150 total 
documents

Let t be a term, d be a document, and C be a corpus.



The man saw the 
thief escaping 
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The 100

man 75

saw 10

thief 5

escaping 3

150 total 
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d



The man saw the 
thief escaping 
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The log(150/100)

man log(150/75)

saw log(150/10)

thief log(150/5)

escaping log(150/3)

150 total 
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)



The man saw the 
thief escaping 
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The log(150/100)

man log(150/75)

saw log(150/10)

thief log(150/5)

escaping log(150/3)

150 total 
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)

TFIDF(t, d, C) = TF(t, d) IDF(t, C)



The man saw the 
thief escaping 
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The log(150/100)

man log(150/75)

saw log(150/10)

thief log(150/5)

escaping log(150/3)

150 total 
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)

TF-IDF(t, d, C) = TF(t, d) IDF(t, C)

TFIDF("the", d, C) = (2/6)(log(150/100) = 0.058

TFIDF("thief", d, C) = (1/6)(log(150/5) = 0.246



Text A B Ai*Bi

I 1 1 1

like 1 0 0

liked 0 1 0

the 1 1 1

training 1 1 1

a 0 1 0

lot 0 1 0

didn't 1 0 0

√5 √6 3

similarity(A, B) 

= 3 / ( √5 * √6 )  

≈ 0.5477

Issue:
Most similar words aren't relevant.



Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.25 0 0

liked 0 0.2 0

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2511

similarity(A, B) 

= 3 / ( √5 * √6 )  

≈ 0.5477

= 0.2511 / (0.5596 * 0.5395)

≈ 0.8317

Issue:
Most similar words aren't relevant.
Solved!



Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.25 0 0

liked 0 0.2 0

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2511

similarity(A, B) 

= 3 / ( √5 * √6 )  

≈ 0.5477

= 0.2511 / (0.5596 * 0.5395)

≈ 0.8317

Issue:
Many similar words are treated differently.



Stemming and Lemmatization

Reduce words to their "root" or "lemma"

Stemming: find/replace word endings

Lemmatization: lookup "dictionary form" of word

Lemmatization requires part-of-speech tagging.



Original Stemmed Lemmatized

running runn (-ing) run

ran ran run

is is be

was wa (-s) be

studies studi (-es) study

studying study (-ing) study

better bett (-er) good

betting bett (-ing) bet



Part-of-Speech Tagging

Assign a "tag" to each word, such as:

● noun

● verb

● article

● adjective

● preposition

● pronoun

● adverb

● conjunction

● interjection.



Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.25 0 0

liked 0 0.2 0

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2511

similarity(A, B) 

= 3 / ( √5 * √6 )  

≈ 0.5477

= 0.2511 / (0.5596 * 0.5395)

≈ 0.8317

Issue:
Many similar words are treated differently.



Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.2 0.2 0.04

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2911

similarity(A, B) 

= 0.2911 / (0.5596 * 0.5395)

≈ 0.964

Issue:
Many similar words are treated differently.
Solved!



Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.2 0.2 0.04

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2911

similarity(A, B) 

= 0.2911 / (0.5596 * 0.5395)

≈ 0.964

Issue:
This measure doesn't incorporate semantics



Beyond Bag of Words

We would like to come up with a vector representation that captures meaning

Other wanted benefits:

● Smaller vectors

● Dense

● Reusable



Super Basics of Neural Networks

Given input data, target outputs

Learn parameters to minimize loss

Training consists of feedforward and backpropagation

Basic building block: perceptron



Super Basics of Neural Networks

Stack perceptrons to make network

Arrows indicate learnable weights

Circles sum all inputs and apply activation 

functions



Super Basics of Neural Networks

Stack perceptrons to make network

Arrows indicate learnable weights

Circles sum all inputs and apply activation 

functions

People often really simplify these 

diagrams
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Word2Vec

Create a neural network to learn useful word 

representations

Words are "known by the company they keep"

Neural network learns to predict words by 

their co-occurrences



Sampling: Sliding Window

Record "center word" (in blue) and 

"context words"



Training

Lookup center word

Predict context words in order

Extract embeddings from internal weights 

to the model



Embedding Visualized



Properties of embeddings



Additional Vector Properties



Improve performance

Preprocessing techniques, such as POS tagging, lemmatization, and stopword removal all improve 

performance of Word2Vec embeddings.

Corpus size: Google trained on Google News (3 billion words)

Embedding size: Between 100- and 500-dimensional embeddings



Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.2 0.2 0.04

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2911

similarity(A, B) 

= 0.2911 / (0.5596 * 0.5395)

≈ 0.964

Issue:
This measure doesn't incorporate semantics



Cosine Similarity Embedding Example

I didn't like the training

I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.5

the 0 0.1

train -0.1 0.25

a 0.1 0

lot -1 0
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I didn't like the training I liked the training a lot



I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0



For short texts, average embeddings 
to get document representation.

I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

Average: 0.02 -0.12

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0

Average: -0.15 0.06



For short texts, average embeddings 
to get document representation.

I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

Average: 0.02 -0.12

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0

Average: -0.15 0.06

Doc A Doc B Ai*Bi

0.02 -0.15 −0.003

-0.12 0.06 −0.007

0.122 0.162 -0.01

Replace BOW columns with 
embeddings



For short texts, average embeddings 
to get document representation.

I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

Average: 0.02 -0.12

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0

Average: -0.15 0.06

Doc A Doc B Ai*Bi

0.02 -0.15 −0.003

-0.12 0.06 −0.007

0.122 0.162 -0.01

Replace BOW columns with 
embeddings

=-0.01 / (0.122 * 0.162)

≈ −0.505



Smaller Issues with Word2Vec

1) Word2Vec cannot handle out-of-vocabulary words

Bad solution: add an "Unknown" embedding 

2) Large vocabularies require very large embedding tables

Bad solution: remove any word that only occurs once

Bad solution: make "meta" tokens, such as "[NUMBER]" or "[NAME]"



Big Issue
with Word2Vec

Embeddings are fixed after training

Homographs: same spelling, different word



BERT &
Transformer Models

First there was ElMO

Then, there was BERT

Now, there's a GROVER, and ERNIE, and so many 

muppet names



Super Basics of Transformers

The model itself is very outside the scope of this talk

Designed around machine translation



Super Basics of Transformers

Embeddings are learned weighted averages of other words in the same sentence



Super Basics of Transformers

Per-word weights are called "attentions" and are 

interpretable





Big Issue
with Word2Vec

Embeddings are fixed after training

Homographs: same spelling, different word

Solved!



Smaller Issues with Word2Vec

1) Word2Vec cannot handle out-of-vocabulary words

Bad solution: add an "Unknown" embedding 

2) Large vocabularies require very large embedding tables

Bad solution: remove any word that only occurs once

Bad solution: make "meta" tokens, such as "[NUMBER]" or "[NAME]"



Beyond "Words"

BERT uses the "WordPiece" tokenizer

Rather than split text on spaces, learn useful character sequences

Helps with out-of-vocabulary words

Provides fixed vocab size

Input: "I saw a girl with a telescope."

Output: [I][▁saw][▁a][▁girl][▁with][▁a][▁][te][le][s][c][o][pe][.]



What can we do with BERT?

Question Answering



What can we do with BERT?

Question Answering

Entity Extraction



What can we do with BERT?

Question Answering

Entity Extraction

Part of Speech Tagging



What can we do with BERT?

Question Answering

Entity Extraction

Part of Speech Tagging

Sentiment Analysis / Regression

I liked the training so much 
that I decided to try out what I 
learned on a personal project.

Sentiment
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Generating Text

Language model

Given tokens t
0 

-> t
i-1

 return the probability distribution of t
i

"If you're happy and you know it"

clap 0.7

your 0.2

head 0.01

hands 0.09

... ...



GPT-2

Changes the attention mechanism of BERT



GPT-2 as a Language Model

Masked attention allows us to predict every word 

given all PREVIOUS words.



Talk to Transformer: Play with generation!

https://talktotransformer.com/
While not normally known for his musical 
talent, Elon Musk is releasing a debut album. 
The "Elon Musk" is a collection of eight new 
songs which are inspired by the founder's life. 
The music, which is available for pre-order on 
iTunes, was created by one-man-band and 
fellow Tesla Motors and SpaceX executive, 
Paul Kasmin, who's known for playing guitar at 
Tesla events. The album is a collaboration 
between Kasmin and Musk himself, although 
it's also being marketed under the Tesla brand.

https://talktotransformer.com/


Summary

● BOW
○ Stopwords
○ TFIDF
○ Stemming & Lemmatization
○ Part-of-speech tagging
○ Cosine Similarity

● Word2Vec
○ CBOW + SkipGram
○ Learn words by company they keep
○ Embeddings capture semantic properties

● BERT
○ Change word embeddings based on company
○ Uses smaller wordpiece vocab


