A Survey of Text Mining

How to solve complex problems with text

Ask a public question

Title

Be specific and imagine you're asking a question to another person

How to give a lecture about text mining

Similar questions

~

lecture slide about AI

nswer

Below is a lecture slide about AI. I think it's a pseudo code about something. But I don't know what these symbols mean. I even can't get the main points of this slide. Please help me. Thank you :)

asked Oct 17 '12 at 6:19 by Jui Wang

about Text Mining. How to save content at website?

In my recent research text mining. This is my R code: data <- list() for(i in 0:8){ tmp <- paste('&page=', i, sep = '') url <- paste('http://bbs.cvut.edu.tw/TopicClassList.aspx?ClassID=5'. tmp.

While not normally known for his musical talent, Elon Musk is releasing a debut album. The "Elon Musk" is a collection of eight new songs which are inspired by the founder's life. The music, which is available for pre-order on iTunes, was created by one-man-band and fellow Tesla Motors and SpaceX executive, Paul Kasmin, who's known for playing guitar at Tesla events. The album is a collaboration between Kasmin and Musk himself, although it's also being marketed under the Tesla brand.

Example: Quantify Survey Results

Activation

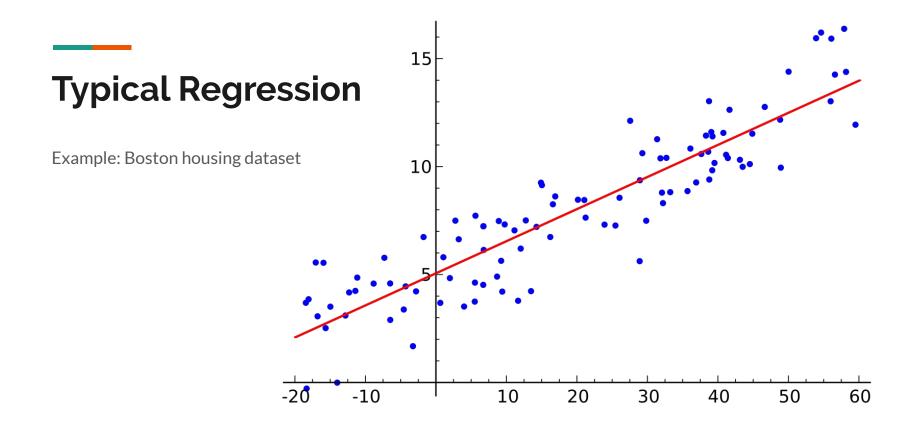
I think the training is leading us down the wrong path, and I reported this to my manager. I liked the training so much that I decided to try out what I learned on a personal project.

I thought the training was a huge waste of my time.

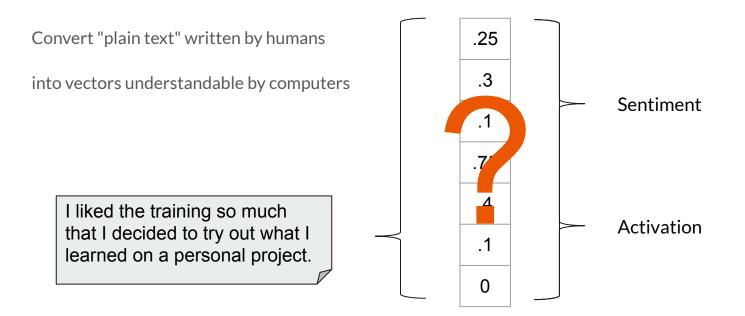
I believe the training classes led to a valuable benefit to my work life.

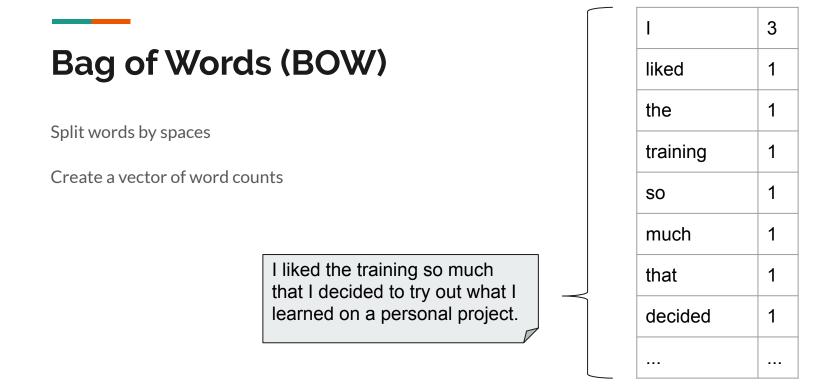
Sentiment

Note: These are <u>not</u> real examples from our dataset.



Challenge: Numeric Features from Text





BOW Vector Properties

Vectors are sparse

Size of vocab = size of vector

I	3	
liked	1	
the	1	
training	1	
SO	1	
much	1	
that	1	
decided	1	

Size of Vocabulary Zeros Omitted

BOW Issues

Frequent words dominate the representation

Word order removed

Similar words become totally different features

I	3	
liked	1	
the	1	
training	1	
SO	1	
much	1	
that	1	
decided	1	

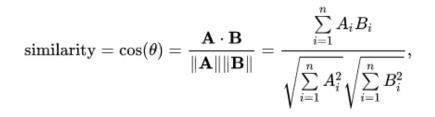
Size of Vocabulary Zeros Omitted

Working with BOW Vectors

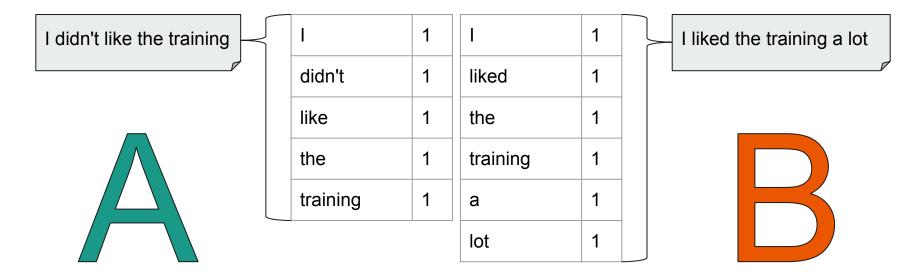
Use cosine similarity to relate different texts

Documents have a similarity between 0 and 1

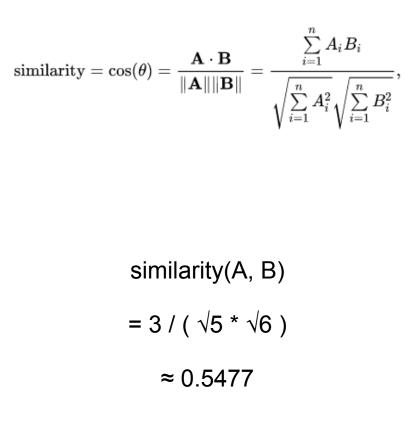
(if A and B are nonnegative)



Cosine Similarity Example



Text	А	В	Ai*Bi
I	1	1	1
like	1	0	0
liked	0	1	0
the	1	1	1
training	1	1	1
а	0	1	0
lot	0	1	0
didn't	1	0	0
	√5	√6	3
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum\limits_{i=1}^n B_i^2}$	$\sum\limits_{i=1}^n A_i B_i$



Text	А	В	Ai*Bi	similarity = $\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$ Issue:
	1	1	1	similarity = $\cos(\theta) = \frac{1}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{1}{\sqrt{\sum_{i=1}^{n} A_{i,i}^2} \sqrt{\sum_{i=1}^{n} B_{i,i}^2}},$
like	1	0	0	
liked	0	1	0	Most similar words aren't relevant.
the	1	1	1	
training	1	1	1	cimilarity(A = B)
а	0	1	0	similarity(A, B)
lot	0	1	0	= 3 / (√5 * √6)
didn't	1	0	0	≈ 0.5477
	√5	√6	3	
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum\limits_{i=1}^{n}B_{i}^{2}}$	$\sum\limits_{i=1}^n A_i B_i$	

Stopwords

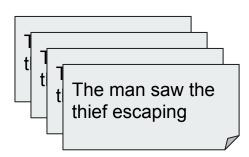
Words that we know aren't relevant

Often we can just remove these

Term Frequency Inverse Document Frequency (TF-IDF)

Prioritize rare words

Demote common words



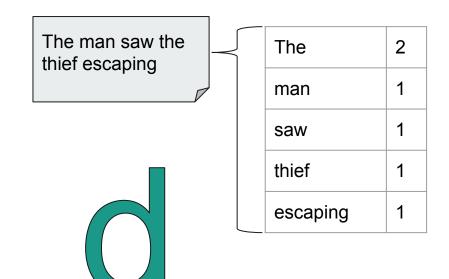
Document Frequency: # docs containing the word

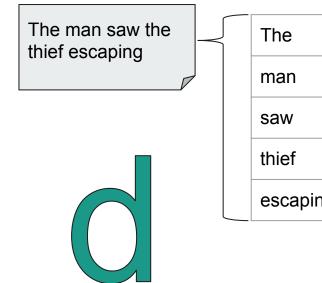
Term Frequency: # occurrences within a document

Let **t** be a term

The

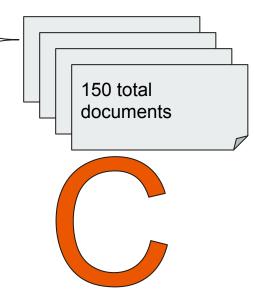
Let **t** be a term, **d** be a document



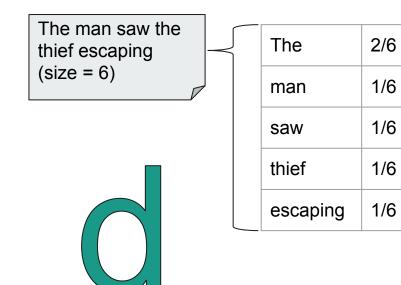


The	2
man	1
saw	1
thief	1
escaping	1

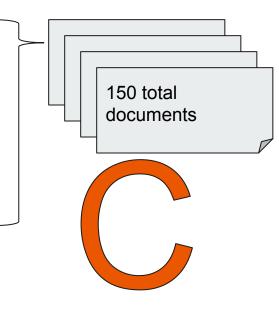
The	100
man	75
saw	10
thief	5
escapin	ng 3



TF(t, d) = # times t occurs in d / size of d

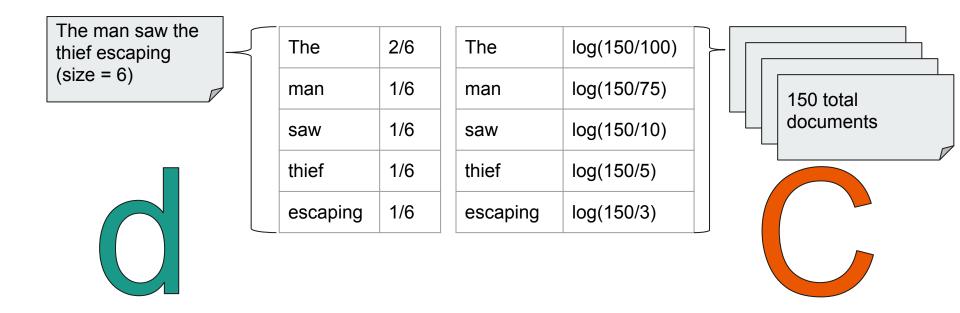


The	100
man	75
saw	10
thief	5
escaping	3



TF(t, d) = # times t occurs in d / size of d

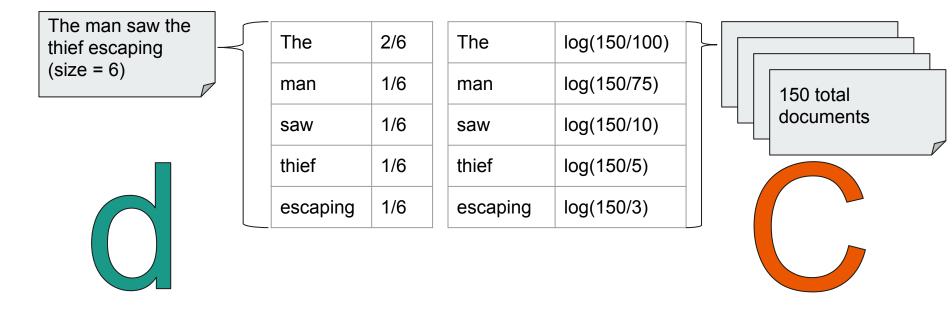
IDF(t, C) = log(size of C / number of documents in C containing t)



TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)

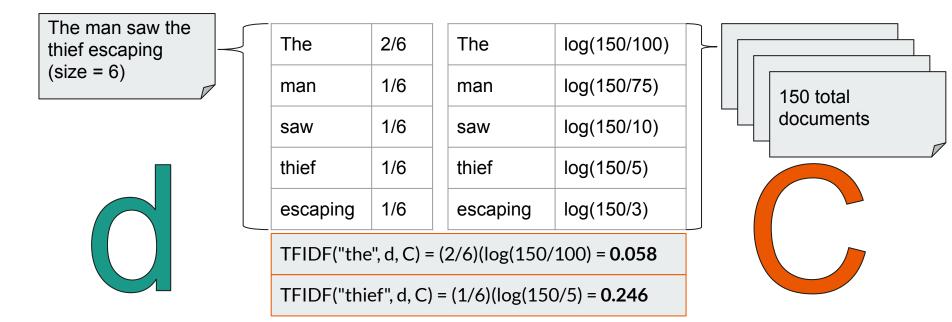
TFIDF(t, d, C) = TF(t, d) IDF(t, C)



TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)

TF-IDF(t, d, C) = TF(t, d) IDF(t, C)



Text	А	В	Ai*Bi	similarity = $\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$ Issue:
	1	1	1	similarity = $\cos(\theta) = \frac{1}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{1}{\sqrt{\sum_{i=1}^{n} A_{i,i}^2} \sqrt{\sum_{i=1}^{n} B_{i,i}^2}},$
like	1	0	0	
liked	0	1	0	Most similar words aren't relevant.
the	1	1	1	
training	1	1	1	cimilarity(A = B)
а	0	1	0	similarity(A, B)
lot	0	1	0	= 3 / (√5 * √6)
didn't	1	0	0	≈ 0.5477
	√5	√6	3	
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum\limits_{i=1}^{n}B_{i}^{2}}$	$\sum\limits_{i=1}^n A_i B_i$	

Text	А	В	Ai*Bi	similarity = $\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$ Issue:
	0.01	0.01	0.0001	similarity = $\cos(\theta) = \frac{1}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{1}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}},$
like	0.25	0	0	Issue: $\bigvee_{i=1}^{i} \bigvee_{i=1}^{j} \bigvee_{i=1}^{i}$
liked	0	0.2	0	Most similar words aren't relevant. Solved!
the	0.01	0.01	0.001	
training	0.5	0.5	0.25	$circularity(\Lambda P)$
а	0	0.002	0	similarity(A, B)
lot	0	0.03	0	= 3 / (√5 * √6)
didn't	0.02	0	0	≈ 0.5477
	0.5596	0.5395	0.2511 ⁿ	= 0.2511 / (0.5596 * 0.5395)
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum\limits_{i=1}^{n}B_{i}^{2}}$	$\sum_{i=1} A_i B_i$	≈ 0.8317

Text	А	В	Ai*Bi	$\mathbf{A} \cdot \mathbf{B}$ $\sum_{i=1}^n A_i B_i$
I	0.01	0.01	0.0001	$= \operatorname{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$
like	0.25	0	0	Issue:
liked	0	0.2	0	Many similar words are treated differently.
the	0.01	0.01	0.001	
training	0.5	0.5	0.25	similarity(A, B)
а	0	0.002	0	Similarity(A, D)
lot	0	0.03	0	= 3 / (√5 * √6)
didn't	0.02	0	0	≈ 0.5477
	0.5596	$\frac{0.5395}{\sqrt{\sum\limits_{i=1}^{n}B_{i}^{2}}}$	0.2511 $\sum_{i=1}^{n} A_i B_i$	= 0.2511 / (0.5596 * 0.5395)
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\bigvee \sum_{i=1}^{D} D_i$	$\sum_{i=1}^{n}$	≈ 0.8317

Stemming and Lemmatization

Reduce words to their "root" or "lemma"

Stemming: find/replace word endings

Lemmatization: lookup "dictionary form" of word

Lemmatization requires part-of-speech tagging.

Original	Stemmed	Lemmatized
running	runn (-ing)	run
ran	ran	run
is	is	be
was	wa (-s)	be
studies	studi (-es)	study
studying	study (-ing)	study
better	bett (-er)	good
betting	bett (-ing)	bet

Part-of-Speech Tagging

Assign a "tag" to each word, such as:

- noun
- verb
- article
- adjective
- preposition
- pronoun
- adverb
- conjunction
- interjection.

Text	А	В	Ai*Bi	$\mathbf{A} \cdot \mathbf{B}$ $\sum_{i=1}^n A_i B_i$
I	0.01	0.01	0.0001	$= \operatorname{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$
like	0.25	0	0	Issue:
liked	0	0.2	0	Many similar words are treated differently.
the	0.01	0.01	0.001	
training	0.5	0.5	0.25	similarity(A, B)
а	0	0.002	0	Similarity(A, D)
lot	0	0.03	0	= 3 / (√5 * √6)
didn't	0.02	0	0	≈ 0.5477
	0.5596	$\frac{0.5395}{\sqrt{\sum\limits_{i=1}^{n}B_{i}^{2}}}$	0.2511 $\sum_{i=1}^{n} A_i B_i$	= 0.2511 / (0.5596 * 0.5395)
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\bigvee \sum_{i=1}^{D} D_i$	$\sum_{i=1}^{n}$	≈ 0.8317

Text	А	В	Ai*Bi	$\mathbf{A} \cdot \mathbf{B} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$
Ι	0.01	0.01	0.0001	
like	0.2	0.2	0.04	Issue: $\sqrt{i=1}$
the	0.01	0.01	0.001	Many similar words are treated differently. Solved!
training	0.5	0.5	0.25	
а	0	0.002	0	similarity(A, B)
lot	0	0.03	0	Similarity(A, D)
didn't	0.02	0	0	= 0.2911 / (0.5596 * 0.5395)
	0.5596	0.5395	0.2911	≈ 0.964
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum_{i=1}^n B_i^2}$	$\sum\limits_{i=1}^n A_i B_i$	

Text	А	В	Ai*Bi	$ ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$
I	0.01	0.01	0.0001	
like	0.2	0.2	0.04	$\bigvee \stackrel{\scriptstyle \sim}{\scriptstyle i=1} \stackrel{\scriptstyle -i}{\scriptstyle } \bigvee \stackrel{\scriptstyle \sim}{\scriptstyle i=1} \stackrel{\scriptstyle -i}{\scriptstyle }$
the	0.01	0.01	0.001	
training	0.5	0.5	0.25	
а	0	0.002	0	aimilarity(A = B)
lot	0	0.03	0	similarity(A, B)
didn't	0.02	0	0	Issue: This measure doesn't incorporate <i>semantics</i> 395)
	0.5596	0.5395	0.2911	~ 0.304
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum_{i=1}^n B_i^2}$	$\sum_{i=1}^n A_i B_i$	

Beyond Bag of Words

We would like to come up with a vector representation that captures meaning

Other wanted benefits:

- Smaller vectors
- Dense
- Reusable

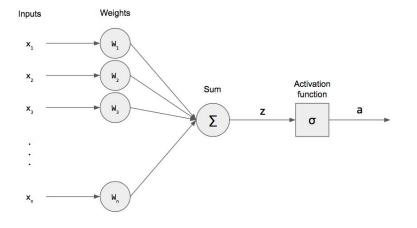
Super Basics of Neural Networks

Given input data, target outputs

Learn parameters to minimize loss

Training consists of feedforward and backpropagation

Basic building block: perceptron

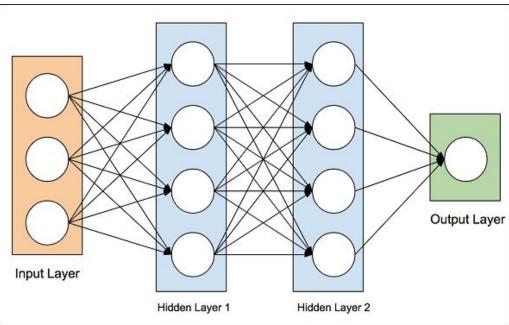


Super Basics of Neural Networks

Stack perceptrons to make network

Arrows indicate learnable weights

Circles sum all inputs and apply activation functions



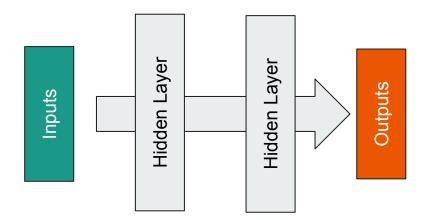
Super Basics of Neural Networks

Stack perceptrons to make network

Arrows indicate learnable weights

Circles sum all inputs and apply activation functions

People often really simplify these diagrams

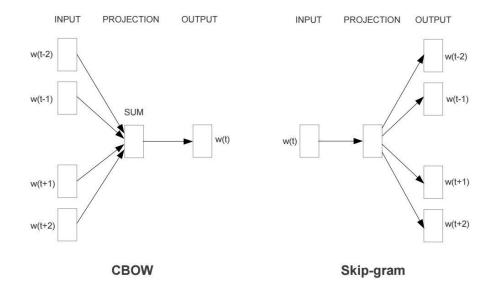


Word2Vec

Create a neural network to learn useful word representations

Words are "known by the company they keep"

Neural network learns to predict words by their co-occurrences



Sampling: Sliding Window

Record "center word" (in blue) and "context words"

Source Text

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

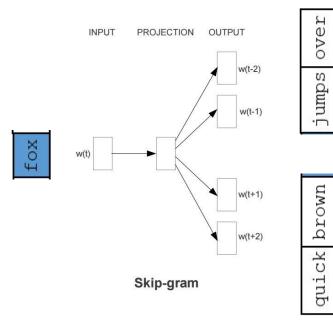
The quick brown fox jumps over the lazy dog.

Training

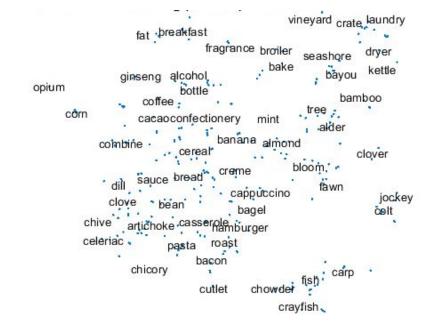
Lookup center word

Predict context words in order

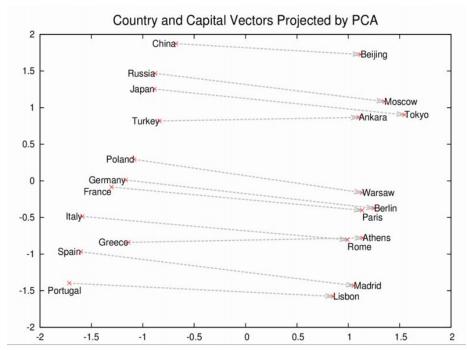
Extract embeddings from internal weights to the model



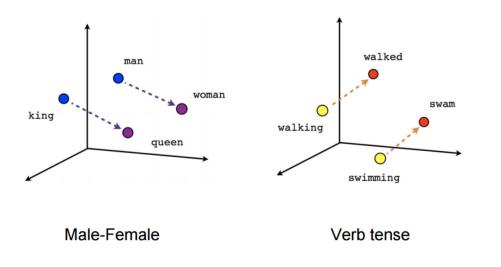
Embedding Visualized

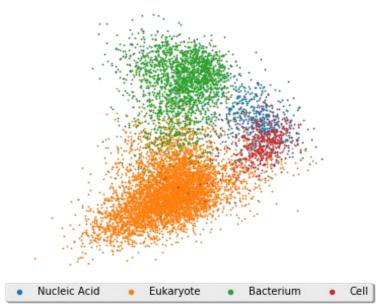


Properties of embeddings



Additional Vector Properties





Improve performance

Preprocessing techniques, such as POS tagging, lemmatization, and stopword removal all improve performance of Word2Vec embeddings.

Corpus size: Google trained on Google News (3 billion words)

Embedding size: Between 100- and 500-dimensional embeddings

Text	А	В	Ai*Bi	$\mathbf{A} \cdot \mathbf{B}$ $\sum_{i=1}^{n} A_i B_i$
I	0.01	0.01	0.0001	$\mathbf{A} \cdot \mathbf{B} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\ \mathbf{A}\ \ \mathbf{B}\ } = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$
like	0.2	0.2	0.04	$\bigvee \stackrel{\scriptstyle \sim}{\scriptstyle i=1} \stackrel{\scriptstyle -i}{\scriptstyle } \bigvee \stackrel{\scriptstyle \sim}{\scriptstyle i=1} \stackrel{\scriptstyle -i}{\scriptstyle }$
the	0.01	0.01	0.001	
training	0.5	0.5	0.25	
а	0	0.002	0	aimilarity(A = B)
lot	0	0.03	0	similarity(A, B)
didn't	0.02	0	0	Issue: This measure doesn't incorporate <i>semantics</i> 395)
	0.5596	0.5395	0.2911	~ 0.304
	$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum_{i=1}^n B_i^2}$	$\sum_{i=1}^n A_i B_i$	

Cosine Similarity Embedding Example

	I	0.1	0
رە س	didn't	0.1	-1
Table	like	0	0.5
dding	the	0	0.1
Embedding Table	train	-0.1	0.25
ш	а	0.1	0
	lot	-1	0

I didn't like the training

I liked the training a lot

I didn't like the training

I liked the training a lot

I didn't like	the trai	ning	I liked the training a lot		
I	0.1	0	I	0.1	0
didn't	0.1	-1	like	0	0.2
like	0	0.2	the	0	0.1
the	0	0.1	train	-0.1	0.1
train	-0.1	0.1	а	0.1	0
			lot	-1	0

For short texts, average embeddings to get document representation.

l didn't like	the trai	ning	I liked the training a lot		
I	0.1	0	I	0.1	0
didn't	0.1	-1	like	0	0.2
like	0	0.2	the	0	0.1
the	0	0.1	train	-0.1	0.1
train	-0.1	0.1	а	0.1	0
Average: 0.02		-0.12	lot	-1	0
		·	Average:	-0.15	0.06

For short texts, average embeddings to get document representation.

I didn't like the training				I liked the training a lot		
1	0.1	0		I	0.1	0
didn't	0.1	-1		like	0	0.2
like	0	0.2		the	0	0.1
the	0	0.1		train	-0.1	0.1
train	-0.1	0.1		а	0.1	0
Average:	0.02	-0.12		lot	-1	0
	•	·		Average:	-0.15	0.06

Replace BOW columns with embeddings

Doc A	Doc B	Ai*Bi
0.02	-0.15	-0.003
-0.12	0.06	-0.007
0.122	0.162	-0.01
$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum_{i=1}^n B_i^2}$	$\sum\limits_{i=1}^n A_i B_i$

For short texts, average embeddings to get document representation.

I didn't like	the trai	ining	I liked the	I liked the training a lot		
I	0.1	0	Ι	0.1	0	
didn't	0.1	-1	like	0	0.2	
like	0	0.2	the	0	0.1	
the	0	0.1	train	-0.1	0.1	
train	-0.1	0.1	а	0.1	0	
Average:	0.02	-0.12	lot	-1	0	
	•	·	Average:	-0.15	0.06	

Replace BOW columns with embeddings

Doc A	Doc B	Ai*Bi
0.02	-0.15	-0.003
-0.12	0.06	-0.007
0.122	0.162	-0.01
$\sqrt{\sum\limits_{i=1}^n A_i^2}$	$\sqrt{\sum_{i=1}^n B_i^2}$	$\sum_{i=1}^n A_i B_i$

$$\frac{\sum_{i=1}^{n} A_{i}B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}} = -0.01 / (0.122 * 0.162)$$
$$\approx -0.505$$

Smaller Issues with Word2Vec

1) Word2Vec cannot handle out-of-vocabulary words

Bad solution: add an "Unknown" embedding

2) Large vocabularies require very large embedding tables

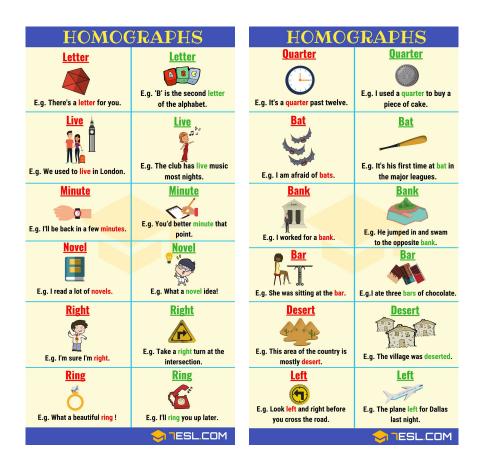
Bad solution: remove any word that only occurs once

Bad solution: make "meta" tokens, such as "[NUMBER]" or "[NAME]"

Big Issue with Word2Vec

Embeddings are fixed after training

Homographs: same spelling, different word



BERT & Transformer Models

First there was EIMO

Then, there was BERT

Now, there's a GROVER, and ERNIE, and so many muppet names

Super Basics of Transformers

The model itself is very outside the scope of this talk

Designed around machine translation

English - detected 👻		4	→ German →
This is an example of machine translation		×	Dies ist ein Beispiel für maschinelle Übersetzung
	D	Ŷ	•) [

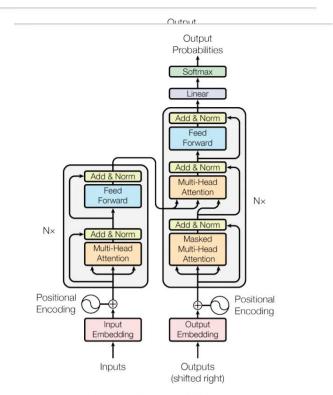
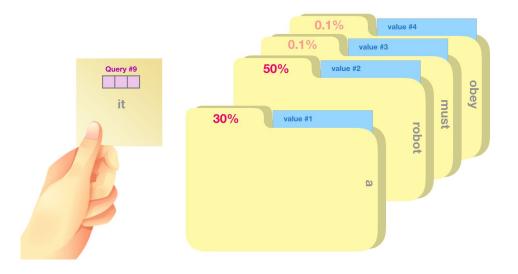


Figure 1: The Transformer - model architecture.

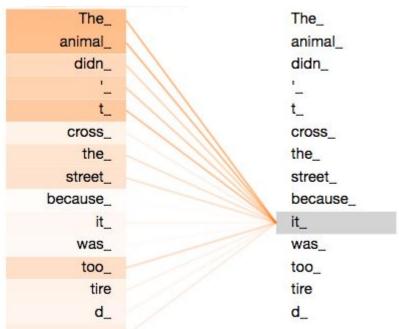
Super Basics of Transformers

Embeddings are learned weighted averages of other words in the same sentence



Super Basics of Transformers

Per-word weights are called "attentions" and are interpretable



```
import torch
from transformers import BertTokenizer, BertModel
```

text = "..."

Load the model, downloads if nessesary
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")

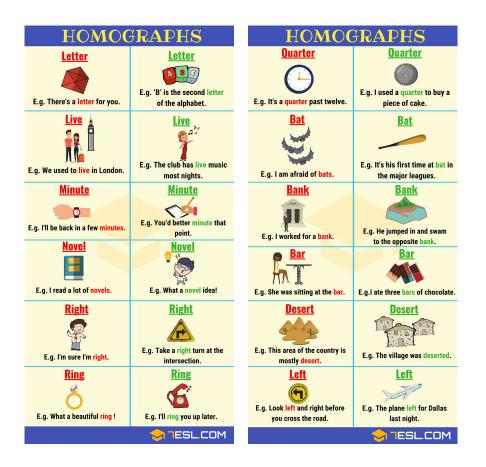
```
# Convert text to int ids
tokens = torch.tensor([tokenizer.encode(text, add_special_tokens=True)])
# We're done!
embeddings = model(tokens)[0]
```

Big Issue with Word2Vec

Embeddings are fixed after training

Homographs: same spelling, different word

Solved!



Smaller Issues with Word2Vec

1) Word2Vec cannot handle out-of-vocabulary words

Bad solution: add an "Unknown" embedding

2) Large vocabularies require very large embedding tables

Bad solution: remove any word that only occurs once

Bad solution: make "meta" tokens, such as "[NUMBER]" or "[NAME]"

Beyond "Words"

BERT uses the "WordPiece" tokenizer

Rather than split text on spaces, learn useful character sequences

Helps with out-of-vocabulary words

Provides fixed vocab size

Input: "I saw a girl with a telescope."

Output: [I] [_saw] [_a] [_girl] [_with] [_a] [_] [te] [le] [s] [c] [o] [pe] [.]

Question Answering

Passage Sentence

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Question

What causes precipitation to fall?

Answer Candidate

gravity

Question Answering

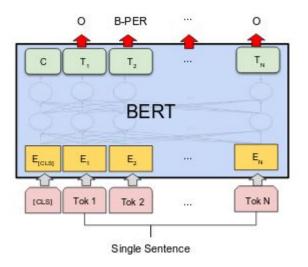
Entity Extraction

In fact, the Chinese NORP market has the three CARDINAL most influential names of the retail and tech space - Alibaba OPE ,
Baidu 碗 , and Tencent PERSON (collectively touted as BAT 碗), and is betting big in the global AI OPE in retail
industry space . The three CARDINAL giants which are claimed to have a cut-throat competition with the U.S. OPE (in terms of
resources and capital) are positioning themselves to become the 'future AI PERSON platforms'. The trio is also expanding in other
Asian NORP countries and investing heavily in the U.S. OPE based AI OPE startups to leverage the power of AI OPE .
Backed by such powerful initiatives and presence of these conglomerates, the market in APAC AI is forecast to be the fastest-
growing one cardinal, with an anticipated CAGR PERSON of 45% PERCENT over 2018 - 2024 DATE .
To further elaborate on the geographical trends, North America Loc has procured more than 50% PERCENT of the global share
in 2017 DATE and has been leading the regional landscape of Al GPE in the retail market. The U.S. GPE has a significant
credit in the regional trends with over 65% PERCENT of investments (including M&As, private equity, and venture capital) in
artificial intelligence technology. Additionally, the region is a huge hub for startups in tandem with the presence of tech titans,
such as Google one , IBM one , and Microsoft one .

Question Answering

Entity Extraction

Part of Speech Tagging



Question Answering

Entity Extraction

Part of Speech Tagging

Sentiment Analysis / Regression

Activation

I liked the training so much that I decided to try out what I learned on a personal project.

Sentiment

Generating Text

Language model

Given tokens $t_0 \rightarrow t_{i-1}$ return the probability distribution of t_i

 "If you're happy and you know it"
 clap
 0.7

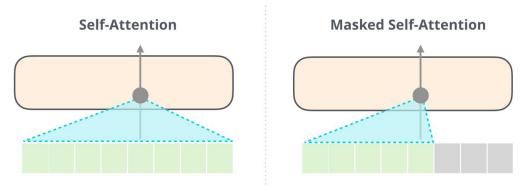
 your
 0.2

 head
 0.01

 hands
 0.09

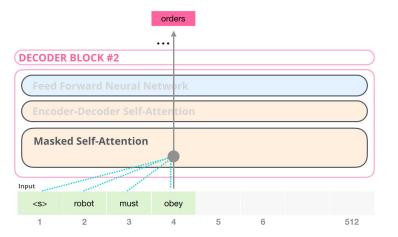
GPT-2

Changes the attention mechanism of BERT



GPT-2 as a Language Model

Masked attention allows us to predict every word given all PREVIOUS words.



Talk to Transformer: Play with generation!

https://talktotransformer.com/

While not normally known for his musical talent, Elon Musk is releasing a debut album. The "Elon Musk" is a collection of eight new songs which are inspired by the founder's life. The music, which is available for pre-order on iTunes, was created by one-man-band and fellow Tesla Motors and SpaceX executive, Paul Kasmin, who's known for playing guitar at Tesla events. The album is a collaboration between Kasmin and Musk himself, although it's also being marketed under the Tesla brand.

Summary

- BOW
 - Stopwords
 - TFIDF
 - Stemming & Lemmatization
 - Part-of-speech tagging
 - Cosine Similarity
- Word2Vec
 - CBOW + SkipGram
 - Learn words by company they keep
 - Embeddings capture semantic properties
- BERT
 - Change word embeddings based on company
 - Uses smaller wordpiece vocab