
A Survey of Text Mining

How to solve complex problems with text

While not normally known for his musical
talent, Elon Musk is releasing a debut album.
The "Elon Musk" is a collection of eight new
songs which are inspired by the founder's life.
The music, which is available for pre-order on
iTunes, was created by one-man-band and
fellow Tesla Motors and SpaceX executive,
Paul Kasmin, who's known for playing guitar at
Tesla events. The album is a collaboration
between Kasmin and Musk himself, although
it's also being marketed under the Tesla brand.

Example: Quantify Survey Results

Note: These are not real examples from our dataset.

I believe the training classes
led to a valuable benefit to my
work life.

I liked the training so much
that I decided to try out what I
learned on a personal project.

I thought the training was a
huge waste of my time.

I think the training is leading us
down the wrong path, and I
reported this to my manager.

Sentiment

A
ct

iv
at

io
n

Typical Regression

Example: Boston housing dataset

Challenge: Numeric Features from Text

Convert "plain text" written by humans

into vectors understandable by computers

I liked the training so much
that I decided to try out what I
learned on a personal project.

.25

.3

.1

.75

.4

.1

0

Sentiment

Activation

Bag of Words (BOW)

Split words by spaces

Create a vector of word counts

I liked the training so much
that I decided to try out what I
learned on a personal project.

I 3

liked 1

the 1

training 1

so 1

much 1

that 1

decided 1

... ...

BOW Vector Properties

Vectors are sparse

Size of vocab = size of vector

I 3

liked 1

the 1

training 1

so 1

much 1

that 1

decided 1

... ...

Si
ze

 o
f V

o
ca

b
u

la
ry

Z
er

o
s

O
m

it
te

d

BOW Issues

Frequent words dominate the representation

Word order removed

Similar words become totally different features

I 3

liked 1

the 1

training 1

so 1

much 1

that 1

decided 1

... ...

Si
ze

 o
f V

o
ca

b
u

la
ry

Z
er

o
s

O
m

it
te

d

Working with BOW Vectors

Use cosine similarity to relate different texts

Documents have a similarity between 0 and 1

(if A and B are nonnegative)

Cosine Similarity Example

I didn't like the training I 1

didn't 1

like 1

the 1

training 1

I liked the training a lotI 1

liked 1

the 1

training 1

a 1

lot 1

Text A B Ai*Bi

I 1 1 1

like 1 0 0

liked 0 1 0

the 1 1 1

training 1 1 1

a 0 1 0

lot 0 1 0

didn't 1 0 0

√5 √6 3

similarity(A, B)

= 3 / (√5 * √6)

≈ 0.5477

Text A B Ai*Bi

I 1 1 1

like 1 0 0

liked 0 1 0

the 1 1 1

training 1 1 1

a 0 1 0

lot 0 1 0

didn't 1 0 0

√5 √6 3

similarity(A, B)

= 3 / (√5 * √6)

≈ 0.5477

Issue:
Most similar words aren't relevant.

Stopwords

Words that we know aren't relevant

Often we can just remove these

Term Frequency Inverse Document Frequency
(TF-IDF)

Prioritize rare words

Demote common words
The man saw the
thief escapingThe man saw the

thief escapingThe man saw the
thief escapingThe man saw the

thief escaping Term Frequency:
occurrences within a document

Document Frequency:
docs containing the word

The

Let t be a term

The man saw the
thief escaping

The 2

man 1

saw 1

thief 1

escaping 1

Let t be a term, d be a document

The man saw the
thief escaping

The 2

man 1

saw 1

thief 1

escaping 1

The 100

man 75

saw 10

thief 5

escaping 3

150 total
documents

Let t be a term, d be a document, and C be a corpus.

The man saw the
thief escaping
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The 100

man 75

saw 10

thief 5

escaping 3

150 total
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d

The man saw the
thief escaping
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The log(150/100)

man log(150/75)

saw log(150/10)

thief log(150/5)

escaping log(150/3)

150 total
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)

The man saw the
thief escaping
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The log(150/100)

man log(150/75)

saw log(150/10)

thief log(150/5)

escaping log(150/3)

150 total
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)

TFIDF(t, d, C) = TF(t, d) IDF(t, C)

The man saw the
thief escaping
(size = 6)

The 2/6

man 1/6

saw 1/6

thief 1/6

escaping 1/6

The log(150/100)

man log(150/75)

saw log(150/10)

thief log(150/5)

escaping log(150/3)

150 total
documents

Let t be a term, d be a document, and C be a corpus.

TF(t, d) = # times t occurs in d / size of d

IDF(t, C) = log(size of C / number of documents in C containing t)

TF-IDF(t, d, C) = TF(t, d) IDF(t, C)

TFIDF("the", d, C) = (2/6)(log(150/100) = 0.058

TFIDF("thief", d, C) = (1/6)(log(150/5) = 0.246

Text A B Ai*Bi

I 1 1 1

like 1 0 0

liked 0 1 0

the 1 1 1

training 1 1 1

a 0 1 0

lot 0 1 0

didn't 1 0 0

√5 √6 3

similarity(A, B)

= 3 / (√5 * √6)

≈ 0.5477

Issue:
Most similar words aren't relevant.

Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.25 0 0

liked 0 0.2 0

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2511

similarity(A, B)

= 3 / (√5 * √6)

≈ 0.5477

= 0.2511 / (0.5596 * 0.5395)

≈ 0.8317

Issue:
Most similar words aren't relevant.
Solved!

Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.25 0 0

liked 0 0.2 0

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2511

similarity(A, B)

= 3 / (√5 * √6)

≈ 0.5477

= 0.2511 / (0.5596 * 0.5395)

≈ 0.8317

Issue:
Many similar words are treated differently.

Stemming and Lemmatization

Reduce words to their "root" or "lemma"

Stemming: find/replace word endings

Lemmatization: lookup "dictionary form" of word

Lemmatization requires part-of-speech tagging.

Original Stemmed Lemmatized

running runn (-ing) run

ran ran run

is is be

was wa (-s) be

studies studi (-es) study

studying study (-ing) study

better bett (-er) good

betting bett (-ing) bet

Part-of-Speech Tagging

Assign a "tag" to each word, such as:

● noun

● verb

● article

● adjective

● preposition

● pronoun

● adverb

● conjunction

● interjection.

Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.25 0 0

liked 0 0.2 0

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2511

similarity(A, B)

= 3 / (√5 * √6)

≈ 0.5477

= 0.2511 / (0.5596 * 0.5395)

≈ 0.8317

Issue:
Many similar words are treated differently.

Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.2 0.2 0.04

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2911

similarity(A, B)

= 0.2911 / (0.5596 * 0.5395)

≈ 0.964

Issue:
Many similar words are treated differently.
Solved!

Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.2 0.2 0.04

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2911

similarity(A, B)

= 0.2911 / (0.5596 * 0.5395)

≈ 0.964

Issue:
This measure doesn't incorporate semantics

Beyond Bag of Words

We would like to come up with a vector representation that captures meaning

Other wanted benefits:

● Smaller vectors

● Dense

● Reusable

Super Basics of Neural Networks

Given input data, target outputs

Learn parameters to minimize loss

Training consists of feedforward and backpropagation

Basic building block: perceptron

Super Basics of Neural Networks

Stack perceptrons to make network

Arrows indicate learnable weights

Circles sum all inputs and apply activation

functions

Super Basics of Neural Networks

Stack perceptrons to make network

Arrows indicate learnable weights

Circles sum all inputs and apply activation

functions

People often really simplify these

diagrams

In
pu

ts

H
id

de
n

La
ye

r

O
ut

pu
ts

H
id

de
n

La
ye

r

Word2Vec

Create a neural network to learn useful word

representations

Words are "known by the company they keep"

Neural network learns to predict words by

their co-occurrences

Sampling: Sliding Window

Record "center word" (in blue) and

"context words"

Training

Lookup center word

Predict context words in order

Extract embeddings from internal weights

to the model

Embedding Visualized

Properties of embeddings

Additional Vector Properties

Improve performance

Preprocessing techniques, such as POS tagging, lemmatization, and stopword removal all improve

performance of Word2Vec embeddings.

Corpus size: Google trained on Google News (3 billion words)

Embedding size: Between 100- and 500-dimensional embeddings

Text A B Ai*Bi

I 0.01 0.01 0.0001

like 0.2 0.2 0.04

the 0.01 0.01 0.001

training 0.5 0.5 0.25

a 0 0.002 0

lot 0 0.03 0

didn't 0.02 0 0

0.5596 0.5395 0.2911

similarity(A, B)

= 0.2911 / (0.5596 * 0.5395)

≈ 0.964

Issue:
This measure doesn't incorporate semantics

Cosine Similarity Embedding Example

I didn't like the training

I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.5

the 0 0.1

train -0.1 0.25

a 0.1 0

lot -1 0

E
m

b
ed

d
in

g
Ta

b
le

I didn't like the training I liked the training a lot

I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0

For short texts, average embeddings
to get document representation.

I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

Average: 0.02 -0.12

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0

Average: -0.15 0.06

For short texts, average embeddings
to get document representation.

I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

Average: 0.02 -0.12

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0

Average: -0.15 0.06

Doc A Doc B Ai*Bi

0.02 -0.15 −0.003

-0.12 0.06 −0.007

0.122 0.162 -0.01

Replace BOW columns with
embeddings

For short texts, average embeddings
to get document representation.

I didn't like the training I liked the training a lot

I 0.1 0

didn't 0.1 -1

like 0 0.2

the 0 0.1

train -0.1 0.1

Average: 0.02 -0.12

I 0.1 0

like 0 0.2

the 0 0.1

train -0.1 0.1

a 0.1 0

lot -1 0

Average: -0.15 0.06

Doc A Doc B Ai*Bi

0.02 -0.15 −0.003

-0.12 0.06 −0.007

0.122 0.162 -0.01

Replace BOW columns with
embeddings

=-0.01 / (0.122 * 0.162)

≈ −0.505

Smaller Issues with Word2Vec

1) Word2Vec cannot handle out-of-vocabulary words

Bad solution: add an "Unknown" embedding

2) Large vocabularies require very large embedding tables

Bad solution: remove any word that only occurs once

Bad solution: make "meta" tokens, such as "[NUMBER]" or "[NAME]"

Big Issue
with Word2Vec

Embeddings are fixed after training

Homographs: same spelling, different word

BERT &
Transformer Models

First there was ElMO

Then, there was BERT

Now, there's a GROVER, and ERNIE, and so many

muppet names

Super Basics of Transformers

The model itself is very outside the scope of this talk

Designed around machine translation

Super Basics of Transformers

Embeddings are learned weighted averages of other words in the same sentence

Super Basics of Transformers

Per-word weights are called "attentions" and are

interpretable

Big Issue
with Word2Vec

Embeddings are fixed after training

Homographs: same spelling, different word

Solved!

Smaller Issues with Word2Vec

1) Word2Vec cannot handle out-of-vocabulary words

Bad solution: add an "Unknown" embedding

2) Large vocabularies require very large embedding tables

Bad solution: remove any word that only occurs once

Bad solution: make "meta" tokens, such as "[NUMBER]" or "[NAME]"

Beyond "Words"

BERT uses the "WordPiece" tokenizer

Rather than split text on spaces, learn useful character sequences

Helps with out-of-vocabulary words

Provides fixed vocab size

Input: "I saw a girl with a telescope."

Output: [I][▁saw][▁a][▁girl][▁with][▁a][▁][te][le][s][c][o][pe][.]

What can we do with BERT?

Question Answering

What can we do with BERT?

Question Answering

Entity Extraction

What can we do with BERT?

Question Answering

Entity Extraction

Part of Speech Tagging

What can we do with BERT?

Question Answering

Entity Extraction

Part of Speech Tagging

Sentiment Analysis / Regression

I liked the training so much
that I decided to try out what I
learned on a personal project.

Sentiment

A
ct

iv
at

io
n

Generating Text

Language model

Given tokens t
0

-> t
i-1

 return the probability distribution of t
i

"If you're happy and you know it"

clap 0.7

your 0.2

head 0.01

hands 0.09

... ...

GPT-2

Changes the attention mechanism of BERT

GPT-2 as a Language Model

Masked attention allows us to predict every word

given all PREVIOUS words.

Talk to Transformer: Play with generation!

https://talktotransformer.com/
While not normally known for his musical
talent, Elon Musk is releasing a debut album.
The "Elon Musk" is a collection of eight new
songs which are inspired by the founder's life.
The music, which is available for pre-order on
iTunes, was created by one-man-band and
fellow Tesla Motors and SpaceX executive,
Paul Kasmin, who's known for playing guitar at
Tesla events. The album is a collaboration
between Kasmin and Musk himself, although
it's also being marketed under the Tesla brand.

https://talktotransformer.com/

Summary

● BOW
○ Stopwords
○ TFIDF
○ Stemming & Lemmatization
○ Part-of-speech tagging
○ Cosine Similarity

● Word2Vec
○ CBOW + SkipGram
○ Learn words by company they keep
○ Embeddings capture semantic properties

● BERT
○ Change word embeddings based on company
○ Uses smaller wordpiece vocab

