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Overview

• Latent Variables
• Unobservable qualities of a dataset.
• Text Embeddings
• Transferable textual latent features.
• Correspond to semantic properties of words.
• Graph Embeddings
• Underlying network features.
• Correspond to roles, communities, and unobserved node-features.
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Outline

Hypothesis Generation
Moliere: Automatic Biomedical Hypothesis Generation
Validation via Candidate Ranking
Are Abstracts Enough?

Graph Embedding
Heterogeneous Bipartite Graph Embedding
Partition Hypergraphs with Embeddings

Proposed Work
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Hypothesis Generation Background



Drug Discovery Problem Overview

• Medical research is expensive and risky.
• Text mining can identify fruitful research directions before expensive

experiments.

Wall Street Journal
Pfizer Ends Hunt for Drugs to Treat

Alzheimer’s and Parkinson’s
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Hypothesis Generation Overview

• PubMed contains over 27-million abstracts.
• 2-4k added daily.
• Hypothesis generation finds implicitly published relationships.
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• Automatic Biomedical Hypothesis Generation System
• Basic Pipeline
• Data collection
• Network construction
• Abstract identification
• Topic modeling
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Data Collection
• Titles & Abstracts

Tumours evade immune control by creating hostile microenvironments that perturb T cell
metabolism and effector function.

• Phrases (n-grams)
• “T cell metabolism”
• Predicates
• tumours → evade → immune control

• Unified Medical Language System

Neoplasms
tumor, tumour, oncological abnormality
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Medical Text Embedding

• Use fasttext to capture latent features [3].
• Semantically similar items are nearest

neighbors.
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Network Construction
• Connections between data types.
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Abstract Identification
• Queries in form (a, c).
• Find shortest path.
• Identify abstracts near path.
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Topic Modeling
• Run LDA topic modeling [2].
• Analyze word patterns across topics.
• Example: Venlafaxine interacts with HTR1A.
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Automating Analysis

• Studying topics manually is infeasible.
• We propose plausibility ranking criteria.
• Drug discovery is a ranking problem.
• Allows for large-scale numerical evaluation.
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Validation Through Ranking

• Evaluate sorting criteria through ROC.
• “Synthetic” experiment, similar to drug

discovery.
• Identify recent discoveries.
• Create negative samples.
• Propose ranking criteria.
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Validation Data

• Set “cut-date.”
• Training Data:
• All papers published prior.
• Validation Data:
• Recent discoveries: SemMedDB pairs

first occurring after.
• Negative samples: Random UMLS

pairs never occurring.
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Proposed Ranking: Embedding

• Measure distance between query terms a and c.
• Calculate weighted centroid for each topic.
• Measure distances between terms and topics.
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Proposed Ranking: Topics

• Create nearest-neighbors network from topic embeddings.
• Measure network statistics of shortest path a− c.
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Combination Ranking

• Embedding measures
• CSim(a, c): Cosine Similarity of Embeddings
• L2(a, c): Euclidean Distance of Embeddings
• BestCentrCSim(a, c, T ): Maximum joint topic similarity.
• BestCentrL2(a, c, T ): Minimum joint topic distance.
• BestTopPerWord(a, c, T ): Max of minimum joint similarity.
• TopicCorr(a, c, T ): Correlation of Topic Distances

• Topic network measures
• TopWalkLength(a, c, T ): Length of shortest path a ∼ c
• TopWalkBtwn(a, c, T ): Avg. a ∼ c betweenness centrality
• TopWalkEigen(a, c, T ): Avg. a ∼ c eigenvalue centrality
• TopNetCCoef(a, c, T ): Clustering coefficient of N
• TopNetMod(a, c, T ): Modularity of N

PolyMultiple(a, c, T ) = α1 · L
β1
2 + α2 · BestCenterLβ2

2

+ α3 · BestTopPerWord(a, c, T )β3 + α4 · TopCorr(a, c, T )β4

+ α5 · TopWalkBtwn(a, c, T )β5 + α6 · TopNetCCoef(a, c, T )β6
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Validation Results

• Top ranking criteria:
• PolyMultiple
• L2

• BestCentrCSim
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Testing in the Real World

• Apply ranking criteria for
laboratory experiments.
• HIV-associated Neurodegenerative

Disorder
• 30% of HIV patents over 60 develop

dementia.
• We searched 40k gene relationships.
• Identified DDX3X.
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Are Abstracts Enough?



Are Abstracts Enough?

• Determine relationship between input and output.
• Rebuild Moliere using different corpora.
• Evaluate using ranking method.
• Explore effect of:
• Corpus size.
• Document length.
• Abstracts vs. full-texts.
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Full-text Challenges

• Expensive
• Often requires licensing.
• Longer documents
• 15.6x more words-per-document.
• Parsing
• Figure, tables, references, PDFs.
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Experiments

• Create separate instances of Moliere
• From training vector space to Polynomial.
• Datasets
• Iterative halves of PubMed.
• PubMed Central full texts & abstracts.
• Evaluation
• Create shared set of positive and negative hypotheses.
• Cut year of 2015.
• Rank and calculate ROC curves.

27



Dataset Details

Corpus Total Words Unique Words Corpus Size Median Words
per Document

PMC Abstracts 109,987,863 673,389 1,086,704 102
PMC Full-Text 1,860,907,606 6,548,236 1,086,704 1594

PubMed 1,852,059,044 2,410,130 24,284,910 71
1/2 PubMed 923,679,660 1,505,672 12,142,455 71
1/4 PubMed 460,384,928 920,734 6,071,227 71
1/8 PubMed 229,452,214 565,270 3,035,613 71

1/16 PubMed 114,385,607 349,174 1,517,806 71
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Abstract vs Full Text Results

• Summarize performance with L2
and Polynomial metrics.
• Polynomial evaluates whole system.
• L2 evaluates embedding.
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Beyond Quality

• Full text improves performance quality by about 10%.
• Full text increases runtime from 2m to 1.5h.
• Topic modeling:
• Primary runtime increase.
• Less interpretable topics.
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Effects

• Corpus size:
• Longer corpus helps slightly.
• Document length:
• Longer documents significantly improve word embeddings.
• Increase runtime.
• Abstracts vs. Full text
• Content in full texts not found in abstracts.
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Hypothesis Generation Summary

• Moliere
• Use embedding to make network, find abstracts, perform topic modeling.
• Validation via Candidate Ranking
• Propose metrics to quality embedding and topic model qualities.
• Evaluate recently published results, extend to real-world experiments.
• Are Abstracts Enough?
• Compare performance of system across different corpus qualities.
• Full texts improve performance at large runtime penalty.
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Graph Embedding Background



Two Different Graph Similarities [10]

• Structural Similarity • Homophilic Similarity
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Skip-Gram Model [17]

• Sample windows centered on target
word.
• Predict leading & trailing context

from target embedding.
• Assumption: “Similar words share

similar company.”
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Deepwalk [19]
• Sample random walks from graph.
• Interpret walks as “sentences.”
• Apply Skip-Gram model.

36



LINE [21]

• Sample first- & second-order neighbors.
• Fit observed samples to embeddings.
• Observed probability between u & v:

p(u, v) = wuv∑
(i,j)∈E wij

• Predicted probability:
p̂(u, v, ε) = σ(ε(u)ᵀε(v))

• Minimize KL-Divergence between p and p̂.
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Node2Vec [10]

• Combine structural and
homophilic.
• Blends breadth- and depth-first walks.
• Adds return- and out-parameters.
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Heterogeneous Bipartite Graph Embedding



Heterogeneous Bipartite Graphs

• Contains two node types.
• GB = (V,E)
• V = A ∪B
• A and B are disjoint.
• Neighborhood Γ(i).
• If i ∈ A, then Γ(i) ⊆ B.
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Proposed Methods

• Boolean Heterogeneous Bipartite
Embedding
• Weight all samples equally.
• Sample direct and first-order

relationships.

• Algebraic Heterogeneous Bipartite
Embedding
• Weight sampling with algebraic

distance.
• Sample direct, first-, and second-order

relationships.

Both Methods:
• Enable type-specific latent features.
• Make only same-type comparisons.
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Algorithm Outline

• Observed similarities:
• SA(i, j), SB(i, j), SAB(i, j)
• Predicted similarities w.r.t. embedding (ε : V → Rk):
• S̃A(i, j, ε), S̃B(i, j, ε), S̃AB(i, j, ε)
• Optimize:
• Minimize difference between S and S̃.
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Boolean Heterogeneous Bipartite Embedding



Boolean Observations

• Observed cross-type relationships:

SAB(i, j) =

1 i ∈ Γ(j)
0 otherwise

• Observed same-type relationships:

SA(i, j) = SB(i, j) =

1 Γ(i) ∩ Γ(j) 6= ∅
0 otherwise
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Boolean Predictions

• Predicted same-type relationships:

S̃A(i, j, ε) = σ (ε(i)ᵀε(j))

• Predicted cross-type relationships:
• Decompose into same-type relationships.

S̃AB(i, j, ε) = E
k∈Γ(j)

[
S̃A(i, k, ε)

]
E

k∈Γ(i)

[
S̃B(k, j, ε)

]
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Boolean Optimization

• Loss for a particular similarity:

OX =
∑
i,j∈V

S̃X(i, j, ε) log
 SX(i, j)
S̃X(i, j, ε)


• Optimization:

min
ε
OA +OAB +OB
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Algebraic Heterogeneous Bipartite Embedding



Algebraic Distance I

• Stationary iterative relaxation.
• Algebraic distance for hypergraphs [20], adapted for bipartite graphs:

a0 ∼ [0, 1]

at+1(i) = λat(i) + (1− λ)
∑
j∈Γ(i) at(j)|Γ(j)|−1∑

j∈Γ(i) |Γ(j)|−1

• Between each iteration, rescale to [0, 1].
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Algebraic Distance II

• Run T = 20 algebraic distance trials until stabilization.
• Summarize distances across all trials:

d(i, j) =

√√√√√ T∑
t′=1

(
a

(t′)
∞ (i)− a(t′)

∞ (j)
)2

• Summarize similarity between nodes:

s(i, j) =
√
T − d(i, j)√

T
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Algebraic Observations

• Same-type:
• Two A nodes are similar if any B node is highly similar to both.

S′A(i, j) = S′B(i, j) = max
k∈Γ(i)∩Γ(j)

min (s(i, k), s(k, j))

• Cross-type, sample both direct and second-order neighbors:
• Decompose cross-type comparisons to same-typed neighborhoods.

S′AB(i, j) = max
(

max
k∈Γ(j)

S′A(i, k), max
k∈Γ(i)

S′B(k, j)
)
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Algebraic Predictions

• Predicted same-type relationships:

S̃′

A(i, j, ε) = max (0, ε(i)ᵀε(j))

• Predicted same- and cross-typed relationships:

S̃′

AB(i, j, ε) = E
k∈Γ(j)

[
S̃′

A(i, k, ε)
]

E
k∈Γ(i)

[
S̃′

B(k, j, ε)
]
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Algebraic Optimization

• Loss for a particular similarity:

O
′

X = E
i,j∈V

(
S′

X(i, j)− S̃′

X(i, j, ε)
)2

• Optimization:
min
ε
O′A +O′AB +O′B
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New Embedding Methods

• Boolean Heterogeneous Bipartite
Embedding (BHBE)
• Observes existence of relationships.
• Predicts using σ(ε(i)ᵀε(j)).
• Minimizes KL-Divergence.

• Algebraic Heterogeneous Bipartite
Embedding (AHBE)
• Observes relationships weighted

through algebraic distance.
• Predicts using max(0, ε(i)ᵀε(j)).
• Minimizes Mean-Squared Error.
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Combination Embedding

• Learn joint representation to
combine AHBE & BHBE.
• Direct encoding predicts links through

joint embedding.
• Auto-regularized encoding also

enforces all latent features are
captured.
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Evaluation I

• Link prediction task.
• Select graph, delete % of edges.
• Embed remaining graph.
• Use embeddings to recover removed edges.
• Explore varying hold-out percentages.
• From 10% to 90% splits.
• Increments of 10%.
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Evaluation II

• Models:
• A- and B-Personalized.

• Train a SVM for each node in the training set.
• Each SVM detects an embedding region

containing neighbors.
• Unified.

• Train a shallow neural network.
• Predict links given one embedding of each

type.

A-Personalized Model
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Benchmark

Γ(i ∈ A) Γ(j ∈ B)
Graph |A|/|B| md max md max SR LCP
Amazon 16,716/5,000 3 49 8 328 75.8 1.6
DBLP 93,432/5,000 1 12 8 7,556 174.7 81.7
Friendster 220,015/5,000 1 26 133 1,612 80.3 58.3
Livejournal 84,438/5,000 1 20 16 1,441 100.9 27.0
MadGrades 11,951/6,462 3 39 4 393 57.3 99.7
YouTube 39,841/5,000 1 54 4 2,217 113.3 80.6

Table: Graph summary. We report the median (md) and max degree for each node set, as well as the
Spectral Radius (SR) and the percentage of the largest connected component (LCP).
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MadGrades: UW. Instructor-Course Network
(|A| = 11, 951, |B| = 6, 462)

Ac
cu

ra
cy

A-Personalized B-Personalized Unified

Training-Test Split
— BHBE — AHBE — Direct Comb.
— Auto-Reg. Comb. - - Deepwalk - - LINE
- - Node2Vec - - BiNE - - Metapath2Vec++
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Results
• Algebraic HBE
• Best detects trends among high-degree nodes.
• Stability issues with larger graphs.
• Boolean HBE
• Outperforms typical state-of-the-art methods, competitive with other

heterogeneous methods.
• Robust across trials.
• Combinations
• BHBE and ABHE find different latent features.
• Bootstrap performance above state-of-the-art.
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Partition Hypergraphs with Embeddings



Hypergraphs

• Generalization: hyperedges contain any
number of nodes.
• H = (V,E)
• V = {v1, v2, . . . , vn}
• E = {e1, e2, . . . , em}
• ei ⊆ V
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Hypergraph Star Expansion
• Map hyperedges to nodes.
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Hypergraph Partitioning: Problem Description I

• Problem: Split V into k disjoint sets...
• of approximately equal size.
• minimizing an objective of cut hyperedges.
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Hypergraph Partitioning: Problem Description II

• Partition:
• V = V1 ∪ V2 ∪ · · · ∪ Vk

• ∀(Vi, Vj), Vi ∩ Vj = ∅

• Ecut = {e ∈ E : @Vi, e ⊆ Vi}
• Metrics:

λcut := |Ecut|
λk−1 :=

∑
e∈Ecut

|{Vi : Vi ∩ e 6= ∅}| − 1
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Hypergraph Partitioning: Problem Description III

• Hypergraph partitioning is NP-Hard...
• to solve [15].
• to approximate [5].
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Multilevel Heuristic

• Steps:
• Coarsen
• Initial Solution
• Uncoarsen: Interpolate &

local search.
• Paradigms:
• (log n)-Level: Each level, pair

almost all nodes.
• n-Level: Each level, pair two

nodes.
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Coarsening

• Desired coarsening properties [12]:
• Reduce number of nodes & hyperedges.
• Remain structurally similar.

Contribution
Use hypergraph embeddings to better
coarsen nodes.
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Typical Coarsening

• Assigning all nodes & hyperedges uniform weights: wi = 1.
• Measure similarities (e.g. hyperedge inner product).

SE(u, v) =
∑

e∈E|u,v∈e

we
|e| − 1

• Match nodes into (u, v).
• Contract u and v into x.
• wx = wu + wv

• x participates in all hyperedges of u and v.
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Embedding-based Coarsening

• Quantify similarity within embedding.

Sε(u, v) = ε(u)ᵀε(v)

• Prioritize nodes with highly similar neighbors.
• Measure node similarities:

S(u, v) = SESε
wuwv
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Embedding-based Coarsening Algorithm

• Sort V by each node’s highest neighbor similarity.

SortingCriteriau = max
v∈Γ(u)

Sε(u, v)

• In sorted order, pair nodes.

Partneru = argmax
v∈Γ(u)

SE(u, v)Sε(u, v)
wuwv

• Merge (u, v) to coarse node x.
• Assign ε(x) to be the centroid of its contained nodes.
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Evaluation Method I

• Proposed Implementations:
• Zoltan: (log n)-Level, fast and highly parallel.
• KaHyPar: n-Level, high-quality partitioning.
• KaHyPar Flow: n-Level, best known algorithm.
• Considered Embeddings:
• MetaPath2Vec++
• Node2Vec
• AHBE, BHBE
• Combinations (AHBE+BHBE), (All)
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Evaluation Method II

• Baseline Algorithms:
• hMetis [14]
• PaToH [6]
• Zoltan [8]
• KaHyPar (w/ community-based coarsening) [13]
• KaHyPar Flow (w/ flow-based refinement) [12]
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Evaluation Method III

• Benchmark Graphs
• 86 graphs from SuiteSparse Matrix Collection.
• 10 graphs designed to interfere with typical coarsening.

• k values: 2, 4, 8, . . . , 128.
• 20 trials per combination.
• Imbalance tolerance of 3%.
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Partitioning Results I
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Partitioning Results II
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Partitioning Results III
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Partitioning Summary

• Embeddings improve multilevel hypergraph partitioning.
• Latent features indicate relevant structural similarities.
• Embedding similarity prioritizes and matches nodes.
• Most important for small partition counts (k).
• Embeddings capture key clusters.
• Centroids during coarsening smooth some finer details.
• Latent features are most important for particular graphs.
• Social networks.
• Synthetic graphs.
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Future Directions

• Bias in Scientific Embeddings
• Detect confirmation bias.
• Normalize effect of “group think.”

• Hybrid Knowledge Graph Mining
• Train text and graph embeddings.
• Formulate hypothesis generation for

deep learning.
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Bias in Word Embeddings

• Recent work finds gender stereotypes in word embeddings [4].
• Biases exist in science.
• Confirmation bias [18]
• Over-interpreting noise [7].
• P-hacking [11].
• Example P53
• “[A]valanche of research” [22]
• What connections to focus on? Which are noise?
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Hybrid Knowledge Graph Mining for Hypothesis Generation

• Knowledge Graphs
• Triplets, similar to SemMedDB Predicates
• Typed relationships
• Specialized Techniques
• Edge2Vec [9].
• Use text to augment graphs [16].
• SciBERT [1].
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Attention-Based Hypothesis Generation

• Attention-mechanism creates interpretable results.
• Assigns weights to relevant input.
• Unified deep-learning model.
• Input: Embeddings for text and network features.
• Potential Outputs:

• Connection strength.
• Connection type.
• Automatic summary.
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Timeline

Date Accomplishment
April 2019 Dissertation proposal.
August 2019 Return from summer internship. Begin exploring bias in scientific embed-

dings.
November 2019 Complete analysis of bias in scientific embeddings. Begin exploring deep

learning on knowledge graphs for hypothesis generation.
April 2020 Complete analysis of deep learning and knowledge graphs for hypothesis

generation.
June 2020 Dissertation defense.

Table: Timeline of proposed work.
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